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Basics of probability and statistics

1	� Basics of probability 
and statistics

The purpose of this and the following chapter is to briefly go through the most basic concepts in 
probability theory and statistics that are important for you to understand. If these concepts are new to 
you, you should make sure that you have an intuitive feeling of their meaning before you move on to 
the following chapters in this book. 

1.1	 Random variables and probability distributions

The first important concept of statistics is that of a random experiment. It is referred to as any process of 
measurement that has more than one outcome and for which there is uncertainty about the result of the 
experiment. That is, the outcome of the experiment can not be predicted with certainty. Picking a card 
from a deck of cards, tossing a coin, or throwing a die, are all examples of basic random experiments. 

The set of all possible outcomes of an experiment is called the sample space of the experiment. In case 
of tossing a coin, the sample space would consist of a head and a tail. If the experiment was to pick a 
card from a deck of cards, the sample space would be all the different cards in a particular deck. Each 
outcome of the sample space is called a sample point. 

An event is a collection of outcomes that resulted from a repeated experiment under the same condition. 
Two events would be mutually exclusive if the occurrence of one event precludes the occurrence of the 
other event at the same time. Alternatively, two events that have no outcomes in common are mutually 
exclusive. For example, if you were to roll a pair of dice, the event of rolling a 6 and of rolling a double 
have the outcome (3,3) in common. These two events are therefore not mutually exclusive. 

Events are said to be collectively exhaustive if they exhaust all possible outcomes of an experiment. 
For example, when rolling a die, the outcomes 1, 2, 3, 4, 5, and 6 are collectively exhaustive, because 
they encompass the entire range of possible outcomes. Hence, the set of all possible die rolls is both 
mutually exclusive and collectively exhaustive. The outcomes 1 and 3 are mutually exclusive but  
not collectively exhaustive, and the outcomes even and not-6 are collectively exhaustive but not 
mutually exclusive. 

Even though the outcomes of any random experiment can be described verbally, such as described 
above, it would be much easier if the results of all experiments could be described numerically. For that 
purpose we introduce the concept of a random variable. A random variable is a function that assigns 
unique numerical values to all possible outcomes of a random experiment. 
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By convention, random variables are denoted by capital letters, such as X, Y, Z, etc., and the values taken 
by the random variables are denoted by the corresponding small letters x, y, z, etc. A random variable 
from an experiment can either be discrete or continuous. A random variable is discrete if it can assume 
only a finite number of numerical values. That is, the result in a test with 10 questions can be 0, 1, 2, …, 
10. In this case the discrete random variable would represent the test result. Other examples could be 
the number of household members, or the number of sold copy machines a given day. Whenever we 
talk about random variables expressed in units we have a discrete random variable. However, when the 
number of unites can be very large, the distinction between a discrete and a continuous variable become 
vague, and it can be unclear whether it is discrete or continuous.

A random variable is said to be continuous when it can assume any value within an interval. In theory 
that would imply an infinite number of values. But in practice that does not work out. Time is a variable 
that can be measured in very small units and go on for a very long time and is therefore a continuous 
variable. Variables related to time, such as age is therefore also considered to be a continuous variable. 
Economic variables such as GDP, money supply or government spending are measured in units of the 
local currency, so in some sense one could see them as discrete random variables. However, the values are 
usually very large so counting each Euro or dollar would serve no purpose. It is therefore more convenient 
to assume that these measures can take any real number, which therefore makes them continuous.

Since the value of a random variable is unknown until the experiment has taken place, a probability of 
its occurrence can be attached to it. In order to measure a probability for a given events, the following 
formula may be used:

outcomespossibleofnumber  totalThe
occurcan event  waysofnumber The)( AAP  � (1.1)

This formula is valid if an experiment can result in n mutually exclusive and equally likely outcomes, and 
if m of these outcomes are favorable to event A. Hence, the corresponding probability is calculated as 
the ratio of the two measures: n/m as stated in the formula. This formula follows the classical definition 
of a probability. 

Example 1.1

You would like to know the probability of receiving a 6 when you throw a die. The sample space for a 
die is {1, 2, 3, 4, 5, 6}, so the total number of possible outcome are 6. You are interested in one of them, 
namely 6. Hence the corresponding probability equals 1/6. 
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Example 1.2

You would like to know the probability of receiving 7 when rolling two dice. First we have to find the 
total number of unique outcomes using two dice. By forming all possible combinations of pairs we have 
(1,1), (1,2),…, (5,6),(6,6), which sum to 36 unique outcomes. How many of them sum to 7? We have 
(1,6), (2,5), (3,4), (4,3), (5,2), (6,1): which sums to 6 combinations. Hence, the corresponding probability 
would therefore be 6/36 = 1/6.

The classical definition requires that the sample space is finite and that each outcome in the sample space 
is equally likely to appear. Those requirements are sometimes difficult to stand up to. We therefore need 
a more flexible definition that handles those cases. Such a definition is the so called relative frequency 
definition of probability or the empirical definition. Formally, if in n trials, m of them are favorable 
to the event A, then P(A) is the ratio m/n as n goes to infinity or in practice we say that it has to be 
sufficiently large. 

Example 1.3

Let us say that we would like to know the probability to receive 7 when rolling two dice, but we do 
not know if our two dice are fair. That is, we do not know if the outcome for each die is equally likely. 
We could then perform an experiment where we throw two dice repeatedly, and calculate the relative 
frequency. In Table 1.1 we report the results for the sum from 2 to 7 for different number of trials. 

Number of trials

Sum 10 100 1000 10000 100000 1000000 ∞

2 0 0.02 0.021 0.0274 0.0283 0.0278 0.02778

3 0.1 0.02 0.046 0.0475 0.0565 0.0555 0.05556

4 0.1 0.07 0.09 0.0779 0.0831 0.0838 0.08333

5 0.2 0.12 0.114 0.1154 0.1105 0.1114 0.11111

6 0.1 0.17 0.15 0.1389 0.1359 0.1381 0.13889

7 0.2 0.17 0.15 0.1411 0.1658 0.1669 0.16667

Table 1.1 Relative frequencies for different number of trials

From Table 1.1 we receive a picture of how many trials we need to be able to say that that the number 
of trials is sufficiently large. For this particular experiment 1 million trials would be sufficient to receive 
a correct measure to the third decimal point. It seem like our two dices are fair since the corresponding 
probabilities converges to those represented by a fair die.
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1.1.1	 Properties of probabilities

When working with probabilities it is important to understand some of its most basic properties. Below 
we will shortly discuss the most basic properties. 

1.	 1)(0 ≤≤ AP  A probability can never be larger than 1 or smaller than 0 by definition. 
2.	 If the events A, B, … are mutually exclusive we have that ...)()(...)( ++=++ BPAPBAP

Example 1.4

Assume picking a card randomly from a deck of cards. The event A represents receiving a club, and 
event B represents receiving a spade. These two events are mutually exclusive. Therefore the probability 
of the event C = A + B that represents receiving a black card can be formed by )()()( BPAPBAP +=+  

3.	 If the events A, B, … are mutually exclusive and collectively exhaustive set of events then we 
have that 1...)()(...)( =++=++ BPAPBAP

Example 1.5

Assume picking a card from a deck of cards. The event A represents picking a black card and event 
B represents picking a red card. These two events are mutually exclusive and collectively exhaustive. 
Therefore 1)()()( =+=+ BPAPBAP .

4.	 If event A and B are statistically independent then P(AB) = P(A)P(B)where P(AB)is called a 
joint probability. 

5.	 If event A and B are not mutually exclusive then )()()()( ABPBPAPBAP −+=+  P(AB)

Example 1.6

Assume that we carry out a survey asking people if they have read two newspapers (A and B) a given 
day. Some have read paper A only, some have read paper B only and some have read both A and B. In 
order to calculate the probability that a randomly chosen individual has read newspaper A and/or B we 
must understand that the two events are not mutually exclusive since some individuals have read both 
papers. Therefore )()()()( ABPBPAPBAP −+=+ P(AB). Only if it had been an impossibility to have read both 
papers the two events would have been mutually exclusive. 

Suppose that we would like to know the probability that event A occurs given that event B has already 
occurred. We must then ask if event B has any influence on event A or if event A and B are independent. 
If there is a dependency we might be interested in how this affects the probability of event A to occur. 
The conditional probability of event A given event B is computed using the formula: 

)(
)()|(

BP
ABPBAP =

P(AB) � (1.2)
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Example 1.7

We are interested in smoking habits in a population and carry out the following survey. We ask 100 
people whether they are a smoker or not. The results are shown in Table 1.2.

Yes No Total

Male 19 41 60

Female 12 28 40

Total 31 69 100

Table 1.2 A survey on smoking

Using the information in the survey we may now answer the following questions:

i)	 What is the probability of a randomly selected individual being a male who smokes? 
This is just the joint probability. Using the classical definition start by asking how large the sample 
space is: 100. Thereafter we have to find the number of smoking males: 19. The corresponding 
probability is therefore: 19/100=0.19.

ii)	 What is the probability that a randomly selected smoker is a male? 
In this case we focus on smokers. We can therefore say that we condition on smokers when we 
ask for the probability of being a male in that group. In order to answer the question we use 
the conditional probability formula (1.2). First we need the joint probability of being a smoker 
and a male. That turned out to be 0.19 according to the calculations above. Secondly, we have 
to find the probability of being a smoker. Since 31 individuals were smokers out of the 100 
individuals that we asked, the probability of being a smoker must therefore be 31/100=0.31. 
We can now calculate the conditional probability. We have 0.19/0.31=0.6129. Hence there is 
61% chance that a randomly selected smoker is a man. 

1.1.2	 The probability function – the discrete case

In this section we will derive what is called the probability mass function or just probability function 
for a stochastic discrete random variable. Using the probability function we may form the corresponding 
probability distribution. By probability distribution for a random variable we mean the possible values 
taken by that variable and the probabilities of occurrence of those values. Let us take an example to 
illustrate the meaning of those concepts. 
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Example 1.8

Consider a simple experiment where we toss a coin three times. Each trial of the experiment results in 
an outcome. The following 8 outcomes represent the sample space for this experiment: (HHH), (HHT), 
(HTH), (HTT), (THH), (THT), (TTH), (TTT). Observe that each sample point is equally likely to occure, 
so that the probability that one of them occure is 1/8. 

The random variable we are interested in is the number of heads received on one trial. We denote this 
random variable X. X can therefore take the following values 0, 1, 2, 3, and the probabilities of occurrence 
differ among the alternatives. The table of probabilities for each value of the random variable is referred 
to as the probability distribution. Using the classical definition of probabilities we receive the following 
probability distribution.

X 0 1 2 3

P(X) 1/8 3/8 3/8 1/8

Table 1.3 Probability distribution for X

From Table 1.3 you can read that the probability that X = 0, which is denoted )0( =XP , equals 1/8, 
whereas )1( =XP  equals 3/8, and so forth. 
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1.1.3	 The cumulative probability function – the discrete case

Related to the probability mass function of a discrete random variable X, is its Cumulative Distribution 
Function, F(X), usually denoted CDF. It is defined in the following way:

)()( cXPXF ≤= � (1.3)

Example 1.9

Consider the random variable and the probability distribution given in Example 1.8. Using that 
information we may form the cumulative distribution for X:

X 0 1 2 3

P(X) 1/8 4/8 7/8 1

Table 1.4 Cumulative distribution for X

The important thing to remember is that the outcomes in Table 1.3 are mutually exclusive. Hence, when 
calculating the probabilities according to the cumulative probability function, we simply sum over the 
probability mass functions. As an example:

)2()1()0()2( =+=+==≤ XPXPXPXP

1.1.4	 The probability function – the continuous case

When the random variable is continuous it is no longer interesting to measure the probability of a 
specific value since its corresponding probability is zero. Hence, when working with continuous random 
variables, we are concerned with probabilities that the random variable takes values within a certain 
interval. Formally we may express the probability in the following way: 

∫=≤≤
b

a

dxxfbXaP )()(  dx� (1.4)

In order to find the probability, we need to integrate over the probability function, f(X), which is called the 
probability density function (pdf) for a continuous random variable. There exist a number of standard 
probability functions, but the single most common one is related to the standard normal random variable. 

Example 1.10

Assume that X is a continuous random variable with the following probability function:





 >

=
−

else
XeXf

X

0
03)(

3
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Find the probability )5.00( ≤≤ XP . Using integral calculus we find that

5.0

0

5.1035.035.0
0

33 777.013)5.00( eeeedxeXP xx

1.1.5	 The cumulative probability function – the continuous case

Associated with the probability density function of a continuous random variable X is its cumulative 
distribution function (CDF). It is denoted in the same way as for the discrete random variable. However, 
for the continuous random variable we have to integrate from minus infinity up to the chosen value, that is:

∫
∞−

=≤=
c

dXXfcXPcF )()()(  dX� (1.5)

The following properties should be noted:

1)	 0)(F  and 1)( =∞F , which represents the left and right limit of the CDF. 

2)	 )(1)( aFaXP −=≥

3)	 )()()( aFbFbXaP −=≤≤

In order to evaluate this kind of problems we typically use standard statistical tables, which are located 
in the appendix. 

1.2	 The multivariate probability distribution function 

Until now we have been looking at univariate probability distribution functions, that is, probability 
functions related to one single variable. Often we may be interested in probability statements for several 
random variables jointly. In those cases it is necessary to introduce the concept of a multivariate 
probability function, or a joint distribution function. 

In the discrete case we talk about the joint probability mass function expressed as 

),(),( yYxXPYXf ===

Example 1.11

Two people A and B both flip a coin twice. We form the random variables X = “number of heads 
obtained by A”, and Y = “number of heads obtained by B”. We will start by deriving the corresponding 
probability mass function using the classical definition of a probability. The sample space for person A 
and B is the same and equals {(H,H), (H,T), (T,H), (T,T)} for each of them. This means that the sample 
space consists of 16 )44( ×  sample points. Counting the different combinations, we end up with the 
results presented in Table 1.5. 
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X

0 1 2 Total

Y

0 1/16 2/16 1/16 4/16

1 2/16 4/16 2/16 8/16

2 1/16 2/16 1/16 4/16

Total 4/16 8/16 4/16 1.00

Table 1.5 Joint probability mass function, ),( YXf

As an example, we can read that 8/116/2)1,0( ==== YXP  2/16 = 1/8. Using this table we can for instance 
determine the following probabilities:

16
5

16
2

16
1

16
2)2,1()2,0()1,0()( YXPYXPYXPYXP

16
5

16
2

16
1

16
2)1,2()0,2()0,1()( YXPYXPYXPYXP

16
6

16
1

16
4

16
1)2,2()1,1()0,0()( YXPYXPYXPYXP
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Using the joint probability mass function we may derive the corresponding univariate probability mass 
function. When that is done using a joint distribution function we call it the marginal probability 
function. It is possible to derive a marginal probability function for each variable in the joint probability 
function. The marginal probability functions for X and Y are

∑=
y

YXfXf ),()(  for all X� (1.6)

∑=
x

YXfYf ),()(  for all Y� (1.7)

Example 1.12

Find the marginal probability functions for the random variables X given in Table 1.5.

4
1

16
4

16
1

16
2

16
1)2,0()1,0()0,0()0( YXfYXfYXfXP

2
1

16
8

16
2

16
4

16
2)2,1()1,1()0,1()1( YXfYXfYXfXP

4
1

16
4

16
1

16
2

16
1)2,2()1,2()0,2()2( YXfYXfYXfXP

Another concept that is very important in regression analysis is the concept of statistically independent 
random variables. Two random variables X and Y are said to be statistically independent if and only if 
their joint probability mass function equals the product of their marginal probability functions for all 
combinations of X and Y: 

)()(),( YfXfYXf =  for all X and Y� (1.8)

1.3	 Characteristics of probability distributions

Even though the probability function for a random variable is informative and gives you all information 
you need about a random variable, it is sometime too much and too detailed. It is therefore convenient 
to summarize the distribution of the random variable by some basic statistics. Below we will shortly 
describe the most basic summary statistics for random variables and their probability distribution. 

1.3.1	 Measures of central tendency

There are several statistics that measure the central tendency of a distribution, but the single most 
important one is the expected value. The expected value of a discrete random variable is denoted E[X], 
and is defined as follows:

E[XY]= ∑[ ] X

n

i
ii xfxXE µ==∑

=1
)( � (1.9)

i = 1

n
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It is interpreted as the mean, and refers to the mean of the population. It is simply a weighted  
average of all X-values that exist for the random variable where the corresponding probabilities work 
as weights. 

Example 1.13

Use the marginal probability function in Example 1.12 and calculate the expected value of X. 

When working with the expectation operator it is important to know some of its basic properties:

1)	 The expected value of a constant equals the constant, [ ] ccE =

2)	 If c is a constant and X is a random variable then: 
3)	 If a, b, and c are constants and X, and Y random variables then:  

 
4)	 If X and Y are statistically independent then and only then: 

The concept of expectation can easily be extended to the multivariate case. For the bivariate case  
we have

� (1.10)

Example 1.14

Calculate the  using the information in Table 1.5. Using (1.10) we receive:

 

1.3.2	 Measures of dispersion 

It is sometimes very important to know how much the random variable deviates from the expected 
value on average in the population. One measure that offers information about that is the variance and 
the corresponding standard deviation. The variance of X is defined as

[ ] ( )[ ] ( )∑ −=−==
X

XXX XfXXEXVar )(222 µµσ � (1.11)
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The positive square root of the variance is the standard deviation and represents the mean deviation 
from the expected value in the population. The most important properties of the variance is

The variance of a constant is zero. It has no variability.
If a and b are constants then 
Alternatively we have that Var(X) = E[X 2] – E[X]2 

E[X 2] =∑
x

Xfx )(2

Example 1.15

Calculate the variance of X using the following probability distribution:

X 1 2 3 4

P(X) 1/10 2/10 3/10 4/10

Table 1.6 Probability distribution for X

In order to find the variance for X it is easiest to use the formula according to property 4 given above. 
We start by calculating E[X2] and E[X].
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1.3.3	 Measures of linear relationship

A very important measure for a linear relationship between two random variables is the measure of the 
covariance. The covariance betwee X and Y is defined as

� (1.12)

The covariance is the measure of how much two random variables vary together. When two variables tend 
to vary in the same direction, that is, when the two variables tend to be above or below their expected 
value at the same time, we say that the covariance is positive. If they tend to vary in opposite direction, 
that is, when one tends to be above the expected value when the other is below its expected value, we 
have a negative covariance. If the covariance is zero, we say that there is no linear relation between the 
two random variables. 

Important properties of the covariance 

1) [ ] [ ]XVarXXCov =,

2) [ ] [ ]XYCovYXCov ,, =

3) 

4) [ ] [ ] [ ]ZXCovYXCovZYXCov ,,, +=+

The covariance measure is level dependent and has a range from minus infinity to plus infinity. That 
makes it very hard to compare two covariances between different pairs of variables. For that matter 
it is sometimes more convenient to standardize the covariance so that it become unit free and work 
within a much narrower range. One such standardization gives us the correlation between the two 
random variables. 

The correlation between X and Y is defined as

[ ]
[ ] [ ]YVarXVar

YXCovYXCorr ,),( = � (1.13)

The correlation coefficient is a measure for the strength of the linear relationship and range  
from -1 to 1.
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Example 1.16

Calculate the covariance and correlation for X and Y using the information from the joint probability 
mass function given in Table 1.7.

Y
1 2 3 P(X)

X
1 0 0.1 0 0.1
2 0.3 0.2 0.1 0.6
3 0 0.3 0 0.3

P(Y) 0.3 0.6 0.1 1.0

Table 1.7 The joint probability mass function for X and Y

We will start with the covariance. Hence we have to find E[X,Y], E[X] and [Y]. We have

[ ] 2.23.036.021.01 =×+×+×=XE

[ ] 8.11.036.023.01 =×+×+×=YE

This gives .
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We will now calculate the correlation coefficient. For that we need V[X], V[Y]. 

[ ] 2.53.036.021.01 2222 =×+×+×=XE

[ ] 6.31.036.023.01 2222 =×+×+×=YE

[ ] [ ] [ ] 36.02.22.5 222 =−=−= XEXEXV 0.36

[ ] [ ] [ ] 36.08.16.3 222 =−=−= YEYEYV  0.36

Using these calculations we may finally calculate the correlation using (1.13)

1.3.4	 Skewness and kurtosis

The last concepts that will be discussed in this chapter are related to the shape and the form of a probability 
distribution. The Skewness of a distribution is defined in the following way:

[ ]
3

3

X

XXES
σ

µ−
= � (1.14)

A distribution can be skewed to the left or to the right. If it is not skewed we say that the distribution is 
symmetric. Figure 1.1 give two examples for a continuous distribution function.

a) Skewed to the right b) Skewed to the left

Figure 1.1 Skewness of two continuous distributions
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Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution. Formally 
it is defined in the following way:

[ ]
[ ][ ]22

4

X

X

XE

XEK
µ

µ

−

−
= � (1.15)

When a symmetric distribution follows the standard normal it has a kurtosis equal to 3. A distribution 
that are long tailed compared with the standard normal distribution has a kurtosis greater than 3 and 
if it is short tailed compared to the standard normal distribution it has a kurtosis that is less than three. 
It should be observed that many statistical programs standardize the kurtosis and presents the kurtosis 
as K-3 which means that a standard normal distribution receives a kurtosis of 0. 
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2	� Basic probability distributions 
in econometrics

In the previous chapter we study the basics of probability distributions and how to use them when 
calculating probabilities. There exist a number of different probability distributions for discrete and 
continuous random variables, but some are more commonly used than others. In regression analysis we 
primarily use continuous probability distributions. For that reason we need to know something about the 
most basic probability functions related to continuous random variables. In this chapter we are going to 
work with the normal distribution, the t-distribution, the Chi-square distribution and the F-distribution. 
Having knowledge about their properties will enable us to construct most of the tests required to make 
statistical inference within the regression analysis. 

2.1	 The normal distribution

The single most important probability distribution for a continuous random variable in statistics and 
econometrics is the so called normal distribution. It is a symmetric and bell shaped distribution. Its 
Probability Density Function (PDF) and the corresponding Cumulative Distribution Function (CDF) 
are pictured in Figure 2.1. 
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a) Normal Probability Density Function b) Normal Cumulative Distribution Function

Figure 2.1 The normal PDF and CDF
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For notational convenience, we express a normally distributed random variable X as ),(~ 2
XXNX σµ , 

which says that X is normally distributed with the expected value given by Xµ  and the variance given 
by 2

Xσ . The mathematical expression for the normal density function is given by:




















 −
−=

2

2
1exp

2
1)(

X

X

X

XXf
σ
µ

πσ

which should be used in order to determine the corresponding CDF:

∫
∞−

=≤
c

dXXfcXP )()(  dX

Unfortunately this integral has no closed form solution and need to be solved numerically. For that 
reason most basic textbooks in statistics and econometrics has statistical tables in their appendix giving 
the probability values for different values of c. 

Properties of the normal distribution

1.	 The normal distribution curve is symmetric around its mean, Xµ , as shown in Figure 2.1a.
2.	 Approximately 68% of the area below the normal curve is covered by the interval of plus 

minus one standard deviation around its mean: XX σµ ± .
3.	 Approximately 95% of the area below the normal curve is covered by the interval of plus 

minus two standard deviations around its mean: XX σµ ×± 2 .
4.	 Approximately 99.7% of the area below the normal curve is covered by the interval of plus 

minus three standard deviations around its mean: XX σµ ×± 3 .
5.	 A linear combination of two or more normal random variables is also normal.

Example 2.1 

If X and Y are normally distributed variables, then  will also be a normally distributed 
random variable, where a and b are constants. 

6.	 The skewness of a normal random variable is zero.
7.	 The kurtosis of a normal random variable is three. 
8.	 A standard normal random variable has a mean equal to zero and a standard deviation 

equal to one.
9.	 Any normal random variable X with mean Xµ  and standard deviation Xσ can be 

transformed into a standard normal random variable Z using the formula 
X

XXZ
σ
µ−

= . 
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Example 2.2 

Assume a normal random variable X with expected value equal to 4 and a standard deviation equal to 8. 
Using this information we may transform X into a standard normal random variable using the following 
transformation: 

8
4−

=
XZ . It is now easy to show that Z has a mean equal to 0 and a variance equal 

to 1. That is, we have

[ ] [ ] 0
8
4

8
1

8
4

88
4

=−=−



=



 −

= XEXEXEZE ,

Since any normally distributed random variable can be transformed into a standard normal random 
variable we do not need an infinite number of tables for all combinations of means and variances, but 
just one table that corresponds to the standard normal random variable. 
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Example 2.3 

Assume a normal random variable X, with mean 4 and variance 9. Find the probability that X is less  
than 3.5. In order to solve this problem we first need to transform our normal random variable into a 
standard normal random variable, and thereafter use the table in the appendix to solve the problem. 
That is:

( ) ( )167.0
3

45.35.3 −≤=





 −

≤=≤ ZPZPXP

We have that Z should be lower than a negative value, and the table does only contain positive values. 
We therefore need to transform our problem so that it adapts to the table we have access to. In order 
to do that, we need to recognize that the standard normal distribution is symmetric around its zero 
mean and the area of the pdf equals 1. That implies that ( ) ( )167.0167.0 ≥=−≤ ZPZP  and that
( ) ( )167.01167.0 ≤−=≥ ZPZP . In the last expression we have something that we will be able to find 

in the table. Hence, the solution is:

( ) ( ) 4325.05675.01167.015.3 =−=≤−=≤ ZPXP

Example 2.4 

Assume the same random variable as in the previous example and calculate the following probability: 
( )5.45.3 ≤≤ XP . Whenever dealing with intervals we need to split up the probability expression in 

two parts using the same logic as in the previous example. Hence, the probability may be rewritten in 
the following way:

( ) ( ) ( )

( ) ( )167.0167.0
3

45.3
3

45.45.35.45.45.3

−≤−≤=







 −

≤−





 −

≤=≤−≤=≤≤

ZPZP

ZPZPXPXPXP

In order to find the probability for this last equality we simply use the technique from the previous  
example. 

The sampling distribution of the sample mean

Another very important concept in statistics and econometrics is the idea of a distribution of an estimator, 
such as the mean or the variance. It is essential when dealing with statistical inference. This issue will be 
discussed substantially in later chapters and then in relation to estimators of the regression parameters. 

The idea is quite simple. Whenever using a sample when estimating a population parameter we receive 
different estimate for each sample we use. This happens because of sampling variation. Since we are 
using different observations in each sample it is unlikely that the sample mean will be exactly the same 
for each sample taken. By calculating sample means from many different samples, we will be able to 
form a distribution of mean values. The question is whether it is possible to say something about this 
distribution without having to take a large number of samples and calculate their means. The answer 
to that question is yes!
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In statistics we have a very important theorem that goes under the name The Central Limit Theorem. 
It says: 

If X1, X2, … , Xn is a sufficiently large random sample from a population with any distribution, with 
mean Xµ  and variance 2

Xσ , then the distribution of sample means will be approximately normal with 

[ ] XXE µ= and variance [ ]
n

XV X
2σ

= . 

A basic rule of thumb says that if the sample is larger than 30 the shape of the distribution will be 
sufficiently close, and if the sample size is 100 or larger it will be more or less exactly normal. This basic 
theorem will be very helpful when carrying out tests related to sample means. 

Basics steps in hypothesis testing

Assume that we would like to know if the sample mean of a random variable has changed from one year 
to another. In the first year we have population information about the mean and the variance. In the 
following year we would like to carry out a statistical test using a sample to see if the population mean 
has changed, as an alternative to collect the whole population yet another time. In order to carry out 
the statistical test we have to go through the following steps:

1)	 Set up the hypothesis

In this step we have to form a null hypothesis that correspond to the situation of no change, and an 
alternative hypothesis, that correspond to a situation of a change. Formally we may write this in the 
following way:

		  µµ
µµ

≠
=

X

X

H
H

:
:

1

0

In general we would like to express the hypothesis in such a way that we can reject the null hypothesis. If 
we do that we will be able to say something with a statistical certainty. If we are unable to reject the null 
hypothesis we can only conclude that we do not have enough statistical material to say anything about 
the matter. The hypothesis given above is a so called a two sided test, since the alternative hypothesis is 
expressed with a “not equal to”. The alternative would be to express the alternative hypothesis with an 
inequality, such as larger than (>) or smaller than (<), which would result in a one sided test. In most 
cases, you should prefer to use a two sided test before a one sided test unless you are absolutely sure that 
it is impossible for the random variable to be smaller or larger than the given value in the null hypothesis. 
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2.	 Form the test function

In this step we will use the ideas that come from the Central Limit Theorem. Since we have taken a 
sample and calculated a mean we know that a mean can be seen as a random variable that is normally 
distributed. Using this information we will be able to form the following test function:

	

)1,0(~ N

n

XZ
X

X
σ

µ−
=

We transform the sample mean using the population information according to the null hypothesis. That 
will give us a new random variable, our test function Z, that is distributed according to the standard 
normal distribution. Observe that this is true only if our null hypothesis is true. We will discuss this 
issue further below.

3)	 Choose the level of significance for the test and conclude

At this point we have a random variable Z, and if the sample size is larger than 100, we know how 
it is distributed for certain. The fewer number of observations we have, the less we know about the 
distribution of Z, and the more likely it is to make a mistake when performing the test. In the following 
discussion we will assume that the sample size is sufficiently large so that the normal distribution is a 
good approximation. 
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Since we know the distribution of Z, we also know that realizations of Z take values between -1.96 and 
1.96 in 95% of the cases (You should confirm this using Table A1 in the appendix). That is, if we take 
100 samples and calculates the sample means and the corresponding test value for each sample, on 
average 95% of the test values will have values within this interval, if our null hypothesis is correct. 
This knowledge will now be used using only one sample. 

If we take a sample and calculate a test value and find that the test value appear outside the interval, 
we say that this event is so unlikely to appear (less than 5 percent in the example above) that it  
cannot possible come from the distribution according to the null hypothesis (it cannot have the mean 
stated in the null hypothesis). We therefore say that we reject the null hypothesis in favor for the 
alternative hypothesis. 

In this discussion we have chosen the interval [-1.96;1.96] which cover  95% of the probability distribution. 
We therefore say that we have chosen a 5% significance level for our test, and the end points for this 
interval are referred to as critical values. Alternatively, with a significance level of 5% there is a 5% chance 
that we will receive a value that is located outside the interval. Hence there is a 5% chance of making a 
mistake. If we believe this is a large probability, we may choose a lower significance level such as 1% or 
0.1%. It is our choice as a test maker. 

Example 2.5 

Assume that you have taken a random sample of 10 observations from a normally distributed population 
and found that the sample mean equals 6. You happen to know that the population variance equals 2. 
You would like to know if the mean value of the population equals 5, or if it is different from 5. 

You start by formulating the relevant null hypothesis and alternative hypothesis. For this example  
we have:

5:
5:

1

0

≠
=

µ
µ

H
H

You know that according to the central limit theorem the sampling distribution of sample means has a 
normal distribution. We may therefore form the following test function:
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We know that our test function follows the standard normal distribution (has a mean equal to zero) if 
the null hypothesis is true. Assume that we choose a significance level of 1%. A significance level of 1% 
means that there is a 1% chance that we will reject the null hypothesis even though the null hypothesis 
is correct. The critical values according to a significance level of 1% are [-2.576; 2.575]. Since our test 
value is located within this interval we cannot reject the null hypothesis. We have to conclude that the 
mean value of the population might be 5. We cannot say that it is significantly different from 5. 

2.2	 The t-distribution

The probability distribution that will be used most of the time in this book is the so called t-distribution. 
The t-distribution is very similar in shape to the normal distribution but works better for small samples. 
In large samples the t-distribution converges to the normal distribution. 

Properties of the t-distribution

1.	 The t-distribution is symmetric around its mean.
2.	 The mean equals zero just as for the standard normal distribution.
3.	 The variance equals k/(k-2), with k being the degrees of freedom.

In the previous section we explained how we could transform a normal random variable with an arbitrary 
mean and an arbitrary variance into a standard normal variable. That was under condition that we knew 
the values of the population parameters. Often it is not possible to know the population variance, and 
we have to rely on the sample value. The transformation formula would then have a distribution that is 
different from the normal in small samples. It would instead be t-distributed.

Example 2.6 

Assume that you have a sample of 60 observations and you found that the sample mean equals 5 and 
the sample variance equals 9. You would like to know if the population mean is different from 6. We 
state the following hypothesis:

6:
6:

1

0

≠
=

µ
µ

H
H

We use the transformation formula to form the test function 

)1(~ −
−

= n
X t

n
S

Xt µ
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Observe that the expression for the standard deviation contains an S. S represents the sample standard 
deviation. Since it is based on a sample it is a random variable, just as the mean. The test function 
therefore contains two random variables. That implies more variation, and therefore a distribution 
that deviates from the standard normal. It is possible to show that the distribution of this test function 
follows the t-distribution with n-1 degrees of freedom, where n is the sample size. Hence in our case 
the test value equals

The test value has to be compared with a critical value. If we choose a significance level of 5% the critical 
values according to the t-distribution would be [-2.0; 2.0]. Since the test value is located outside the 
interval we can say that we reject the null hypothesis in favor for the alternative hypothesis. That we have 
no information about the population mean is of no problem, because we assume that the population 
mean takes a value according to the null hypothesis. Hence, we assume that we know the true population 
mean. That is part of the test procedure. 
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2.3	 The Chi-square distribution

Until now we have talked about the population mean and performed tests related to the mean. Often it 
is interesting to make inference about the population variance as well. For that purpose we are going to 
work with another distribution, the Chi-square distribution. 

Statistical theory shows that the square root of a standard normal variable is distributed according to the 
Chi-square distribution and it is denoted χ2, and has one degree of freedom. It turns out that the sum of 
squared independent standard normal variables also is Chi-squared distributed. We have:

2
)(

22
2

2
1 ~... kkZZZ χ+++

Properties of the Chi-squared distribution

1.	 The Chi-square distribution takes only positive values

2.	 It is skewed to the right in small samples, and converges to the normal distribution as the degrees of freedom 

goes to infinity

3.	 The mean value equals k and the variance equals 2k, where k is the degrees of freedom

In order to perform a test related to the variance of a population using the sample variance we need a 
test function with a known distribution that incorporates those components. In this case we may rely 
on statistical theory that shows that the following function would work:

2
)1(2

2
~)1(

−
−

n
Sn χ

σ

where 2S represents the sample variance, 2σ the population variance, and n-1 the degrees of freedom 
used to calculate the sample variance. How could this function be used to perform a test related to the 
population variance?

Example 2.7 

We have a sample taken from a population where the population variance a given year was 4002 =σ . 
Some years later we suspect that the population variance has increased and would like test if that is the 
case. We collect a sample of 25 observations and state the following hypothesis:

400: 2
0 =σH

400: 2
1 >σH
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Using the 25 observations we found a sample variance equal to 600. Using this information we set up 
the test function and calculate the test value:

36
400

600)124()1(FunctionTest 2

2
=

×−
=

−
=

s
Sn

We choose a significance level of 5% and find a critical value in Table A3 equal to 36.415. Since the test 
value is lower than the critical value we cannot reject the null hypothesis. Hence we cannot say that the 
population variance has changed. 

2.4	 The F-distribution

The final distribution to be discussed in this chapter is the F-distribution. In shape it is very similar 
to the Chi-square distribution, but is a construction based on a ratio of two independent Chi-squared 
distributed random variables. An F-distributed random variable therefore has two sets of degrees of 
freedom, since each variable in this ratio has its own degrees of freedom. That is:

lm
l

m F ,2

2
~

χ
χ

Properties of the F-distribution

1.	 The F-distribution is skewed to the right and takes only positive values

2.	 The F-distribution converges to the normal distribution when the degrees of freedom become large

3.	 The square of a t-distributed random variable with k degrees of freedom become F-distributed: kk Ft ,1
2 =

The F-distribution can be used to test population variances. It is especially interesting when we would 
like to know if the variances from two different populations differ from each other. Statistical theory says 
that the ratio of two sample variances forms an F-distributed random variable with 11 −n  and 12 −n  
degrees of freedom: 

)1)(1(2
2

2
1

21
~ −− nnFS

S

Example 2.8 

Assume that we have two independent populations and we would like to know if their variances are 
different from each other. We therefore take two samples, one from each population, and form the 
following hypothesis:

2
2

2
10 : σσ =H

2
2

2
11 : σσ ≠H
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Using the two samples we calculate the sample variances,  with 
 Under the null hypothesis we know that the ratio of the two sample variances is 

F-distributed with 25 and 29 degrees of freedom. Hence we form the test function and calculate the 
test value:

This test value has to be compared with a critical value. Assume that we choose a significance level of 
5%. Using Table A4 in the appendix, we have to find a critical value for a two sided test. Since the area 
outside the interval should sum up to 5%, we must find the upper critical point that corresponds to  
2.5%. If we look for that value in the table we find 2.154. We call this upper point 025.0F . In order to 
find the lover point we can use the following formula:

464.0
154.2
11

025.0
975.0 ===

F
F

We have therefore received the following interval: [0.464;2.154]. The test value lies within this interval, 
which means that we are unable to reject the null hypothesis. It is therefore quite possible that the two 
population variances are the same. 
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3	 The simple regression model
It is now time to leave the single variable analysis and move on to the main issue of the book, namely 
regression analysis. When looking at a single variable we could describe its behavior by using any summary 
statistic described in the previous chapters. Most often that would lead to a mean and a variance. The 
mean value would be a description of the central tendency, and the variance or the standard deviation a 
measure of how the average observation deviates from the mean. Furthermore, the kurtosis and skewness 
would say something about the distributional shape around the mean. But we can say nothing about the 
factors that make single observations deviate from the mean. 

Regression analysis is a tool that can helps us to explain in part why observations deviate from the mean 
using other variables. The initial discussion will be related to models that use one single explanatory 
factor or variable X that explains why observations related to the random variable Y deviate from its 
mean. A regression model with only one explanatory variable is sometimes called the simple regression 
model. A simple regression model is seldom used in practice because economic variables are seldom 
explained by just one variable. However, all the intuition that we can receive from the simple model can 
be used in the multiple regression case. It is therefore important to have a good understanding of the 
simple model before moving on to more complicated models. 

3.1	 The population regression model

In regression analysis, just as in the analysis with a single variable, we make the distinction between 
the sample and the population. Since it is inconvenient to collect data for the whole population, we 
usually base our analysis on a sample. Using this sample, we try to make inference on the population, 
that is, we try to find the value of the parameters that correspond to the population. It is therefore 
important to understand the distinction between the population regression equation and the sample 
regression equation. 

3.1.1	 The economic model

The econometric model, as appose to models in statistics in general, is connected to an economic model 
that motivate and explains the rational for the possible relation between the variables included in the 
analysis. However, the economic model is only a logical description of what the researcher believes is 
true. In order to confirm that the made assumptions are in accordance with the reality, it is important 
to specify a statistical model, based on the formulation of the economic model, and statistically test the 
hypothesis that the economic model propose using empirical data. However, it is the economic model 
that allows us to interpret the parameters of the statistical model in economic terms. It is therefore very 
important to remember that all econometric work has to start from an economic model.
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Let us start with a very simple example. Economic theory claims that there is a relationship between 
food consumption and disposable income. It is believed that the monthly disposable income of the 
household has a positive effect on the monthly food expenditures of the household. That means that if 
the household disposable income increases, the food expenditure will increase as well. To make it more 
general we claim that this is true in general, which means that when the average disposable income 
increase in the population, the average food expenditure will increase. Since we talk about averages we 
may express the economic model in terms of an expectation:

[ ] 1101| XBBXYE += � (3.1)

The conditional expectation given by (3.1) is a so called regression function and we call it the population 
regression line. We have imposed the assumption that the relationship between Y and X1 is linear. That 
assumption is made for simplicity only, and later on when we allow for more variables, we may test if this 
is a reasonable assumption, or if we need to adjust for it. The parameters of interest are B0 and B1. In this 
text we will use capital letters for population parameters, and small letters will denote sample estimates 
of the population parameters. 0B will represent the average food expenditure by households when the 
disposable income is zero )0( 1 =X  and is usually referred to as the intercept or just the constant. The 
regression function also shows that if B1 is different from zero and positive, the conditional mean of Y 
on X1 will change and increase with the value of X1. Furthermore, the slope coefficient will represent 
the marginal propensity to spend on food:

3.1.2	 The econometric model

We now have an economic model and we know how to interpret its parameters. It is therefore time 
to formulate the econometric model so that we will be able to estimate the size of the population 
parameters and test the implied hypothesis. The economic model is linear so we will be able to use 
linear regression analysis.

The function expressed by (3.1) represents an average individual. Hence when we collect data, individuals 
will typically not fall on the regression line. We might have households with the same disposable income, 
but with different level of food expenditures. It might even be the case that not a single observation is 
located on the regression line. This is something that we have to deal with. For the observer it might 
appear that the single observations locate randomly around the regression line. In statistical analysis  
we therefore control for the individual deviation from the regression line by adding a stochastic term (U) 
to (3.1), still under the assumption that the average observation will fall on the line. The econometric 
model is therefore:

iii UXBBY ++= 110 � (3.2)
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The formulation of the econometric model will now be true for all households, but the estimated 
population parameters will refer to the average household that is considered in the economic model. 
That is explicitly denoted by the subscript i, that appear on Y, X1 and U but not on the parameters. We 
call expression (3.2) the population regression equation.

Adding a stochastic term may seem arbitrary, but it is in fact very important and attached with a number 
of assumptions that are important to fulfill. In the literature the name for the stochastic term differ from 
book to book and are called error term, residual term, disturbance term etc. In this text we will call the 
stochastic term of the population model for error term and when talking about the sample model we 
will refer to it as the residual term. 

One important rational for the error term already mentioned is to make the equality hold true in equation 
(3.2) for all observations. The reason why it does not hold true in the first place could be due to omitted 
variables. It is quite reasonable to believe that many other variables are important determinants of the 
household food expenditure, such as family size, age composition of the household, education etc. There 
might in fact be a large number of factors that completely determines the food expenditure and some 
of them might be family specific. To be general we may say that:

),...,,( 21 kXXXfY =
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with k explanatory factors that completely determine the value of the dependent variable Y, where 
disposable income is just one of them. Hence, having access to only one explanatory variable we may 
write the complete model in the following way for a given household:

),...,,( 32110 kXXXfXBBY ++=

UXBBY ++= 110

Hence everything left unaccounted for will be summarized in the term U, which will make the equality 
hold true. This way of thinking of the error term is very useful. However, even if we have access to all 
relevant variables, there is still some randomness left since human behavior is not totally predictable 
or rational. It is seldom the ambition of the researcher to include everything that accounts but just the 
most relevant. As a rule of thumb one should try to have a model that is as simple as possible, and 
avoid including variables with a combined effect that is very small, since it will serve little purpose. The 
model should be a simplistic version of the reality. The ambition is never to approach the reality with 
the model, since that will make the model too complicated.

Sometimes it might be the case that you have received data that has been rounded off, which will 
make the observations for the variable less precise. Errors of measurement are therefore yet another 
source of randomness that the researcher sometimes has no control over. If these measurements errors 
are made randomly over the sample, it is often of minor problem. But if the size of the error is 
correlated with the dependent variable it might be problematic. In chapter 7 we will discuss this  
issue thoroughly. 

3.1.3	 The assumptions of the simple regression model

The assumptions made on the population regression equation and on the error term in particular is 
important for the properties of the estimated parameters. It is therefore important to have a sound 
understanding of what the assumptions are and why they are important. The assumptions that we will 
state below is given for a given observation, which means that no subscripts will be used. That is very 
important to remember! The assumptions must hold for each observation.

Assumption 1: 	 UXBBY ++= 110

The relation between Y and X is linear and the value of Y is determined for each value of X. This 
assumption also impose that the model is complete in the sense that all relevant variables has been 
included in the model.
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Assumption 2: 	 [ ] 110| XBBXYE +=

		  [ ] [ ] 0| == UEXUE

The conditional expectation of the error term is zero. Furthermore, there must not be any relation 
between the error term and the X variable, which is to say that they are uncorrelated. This means that 
the variables left unaccounted for in the error term should have no relationship with the variable X 
included in the model. 

Assumption 3:	 [ ] [ ] 2σ== UVYV

The variance of the error term is homoscedastic, that is, the variance is constant over different observations. 
Since Y and U only differ by a constant their variance must be the same. 

Assumption 4: 	 0),(),( == jiji YYCovUUCov 	 ji ≠

The covariance between any pairs of error terms is zero. When we have access to a randomly drawn 
sample from a population this will be the case.

Assumption 5: 	X need to vary in the sample. 

X can not be a constant within a given sample since we are interested in how variation in X affects 
variation in Y. Furthermore, it is a mathematical necessity that X takes at least two different values in 
the sample. However, we are going to assume that X is fixed from sample to sample. That means that the 
expected value of X is X itself (like a constant), and the variance of X must be zero when working with 
the regression model. But within a sample there need to be variation. This assumption is often imposed 
to make the mathematics easier to deal with in introductory texts, and fortunately it has no affect on the 
nice properties of the OLS estimators that will be discussed at the end of this chapter.

Assumption 6: 	U is normally distributed with a mean and variance.

This assumption is necessary in small samples. The assumption affects the distribution of the estimated 
parameters. In order to perform test we need to know their distribution. When the sample is larger then 
100 the distribution of the estimated parameters converges to the normal distribution. For that reason 
this assumption is often treated as optional in different text books. 

Remember that when we are dealing with a sample, the error term is not observable. That means it 
is impossible to calculate its mean and variance with certainty, which makes it important to impose 
assumptions. Furthermore, these assumptions must hold true for each single observation, and hence 
using only one observation to compute a mean and a variance is meaningless.
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3.2	 Estimation of population parameters

We have specified an economic model, and the corresponding population regression equation. It is now 
time to estimate the value of the population parameters. For that purpose we need a sample regression 
equation, expressed as this:

iii eXbbY ++= 110 � (3.3)

The important difference between the population regression equation and the sample regression equation 
concerns the parameters and the error term. In the population regression equation the parameters are 
fixed constants. They do not change. In the sample regression equation the parameters are random 
variables with a distribution. Their mean values represent estimates of the population parameters, and 
their standard errors are used when performing statistical tests. The error term is also an estimate and 
corresponds to the population error term. 

Sometimes it is convenient to have a separate name for the estimated error term in order to make the 
distinction. In this text we will call the estimated error term the residual term. 
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3.2.1	 The method of ordinary least squares

There exist many methods to estimate the parameters of the population regression equation. The most 
common ones are the method of maximum likelihood, the method of moment and the method of 
Ordinary Least Squares (OLS). The last method is by all means the most popular method used in the 
literature and is therefore the basis for this text. 

10,008,006,004,002,000,00
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Y

Figure 3.1 Fitted regression line using OLS

The OLS relies on the idea to select a line that represents an average relationship of the observed data 
similarly to the way the economic model is expressed. In Figure 3.1 we have a random sample of 10 
observations. The OLS regression line is placed in such a way that the sum of the squared distances 
between the dots and the regression line become as small as possible. In mathematical terms using 
equation (3.3) we have:

( )∑ ∑
= =

−−==
n

i

n

i
iii XbbYeRSS

1 1

2
110

2 � (3.4)

In order to be more general we assume a sample size of n observations. The objective is to minimize 
the Residual Sum of Squares (RSS) expressed in (3.4) with respect to b0 and b1. Hence, this is a standard 
optimization problem with two unknown variables that is solved by taking the partial derivatives with 
respect to b0 and b1, put them equal to zero, and then solving the resulting linear equations system with 
respect to those two variables. We have: 
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By rearranging these two equations we obtain the equation system in normal form:

Solving for b0 and b1 gives us:

110 XbYb −= � (3.7)
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The slope coefficient b1 is simply a standardized covariance, with respect to the variation in X1. The 
interpretation of this ratio is simply: when X1 increases by 1 unit, Y will change by b1 units. Remember 
that b0 and b1 are random variables, and hence it is important to know how their expected values and 
variances look like. Below we will derive the expected value and variance for both the intercept and 
the variance. 

The variance of the intercept is slightly more involved, but since text books in general avoid  
showing how it could be done we will do it here, even though the slope coefficient is the estimate  
of primary interest. 

In order to find the expected value and the variance it is convenient to rewrite the expression for the 
estimators in such a way that they appear to be functions of the sample values of the dependent variable Y. 
Since the intercept is expressed as a function of the slope coefficient we will start with the slope estimator:
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For the intercept we do the following: 
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Hence, the OLS estimators are weighted averages of the dependent variable, holding in mind that Wi is 
to be treated as a constant. Having the OLS estimators in this form we can easily find the expected 
value and variance: 
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For the intercept we do the following:
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Hence, the OLS estimators are weighted averages of the dependent variable, holding in mind that Wi is 
to be treated as a constant. Having the OLS estimators in this form we can easily find the expected 
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Hence, the OLS estimators are weighted averages of the dependent variable, holding in mind that Wi 
is to be treated as a constant. Having the OLS estimators in this form we can easily find the expected 
value and variance:
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The expected value of the OLS estimators
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Hence, the mean value of the sample estimators equals the population parameters. You should confirm 
these steps by your self. The result from the second line comes from the regression assumptions. Also 
remember that the population parameter is a constant and that the expected value of a constant is the 
constant itself. The derivation of the variance will start with the expression established at the second 
line above. 
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The variance of the OLS estimators

When deriving the variance for the intercept, we utilize the definition of the variance that is  
expressed in terms of expectations. We have the expected value of the squared difference, and thereafter 
substitute 
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[ ]
( ) ( )∑

∑

∑
=

=

=

−
=





















−
+= n

i
i

n

i
i

n

i
i XXn

X

XX

X
n

bV

1

2
11

1

2
1

2

2

1

2
11

2
1

0
1

σ
σ � (3.13)

Try to work out the expressions and remember that [ ] [ ] 222 σ== UEUE i and that
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and therefore
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The covariance between the two OLS estimators can be received using the covariance operator together 
with expressions (3.9) and (3.10). Try it out. The covariance is given by the following expression:
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In order to understand all the steps made above you have to make sure you remember how the variance 
operator works. Go back to chapter 1 and repeat if necessary. Also remember that the variance of the 
population error term is constant and the same over observations. If that assumption is violated we will 
end up with something else.

Observe that the variance of the OLS estimators is a function of the variance of the error term of the 
model. The larger the variance of the error term, the larger becomes the variance of the OLS estimator. 
This is true for the variance of the intercept, variance of the slope coefficient and for the covariance 
between slope and the intercept. Remember that the variance of the error term and the variance of the 
dependent variable coincide. Also note that the larger the variation in X is, the smaller become the 
variance of the slope coefficient. Think about that. Increased variation in Y has of course the opposite 
effect, since the variance in Y is the same as the variance of the error term.

The variance of the population error term 2σ  is usually unknown. We therefore need to replace it by 
an estimate, using sample information. Since the population error term is unobservable, one can use 
the estimated residual to find an estimate. We start by forming the residual term

iii XbbYe 110 −−=

We observe that it takes two estimates to calculate its value which implies a loss of two degrees of freedom. 
With this information we may use the formula for the sample variance. That is:

2
ˆ 1

2

2

−
=
∑
=

n

e
n

i
i

σ

Observe that we have to divide by n-2, which referees to the degrees of freedom, which is the number 
of observations reduced with the number of estimated parameters used in order to create the residual. 
It turns out that this is an unbiased estimator of the population variance and it is decreasing as the 
number of observations increases.
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3.2.2	 Properties of the least squares estimator

The OLS estimator is attached to a number of good properties that is connected to the assumptions 
made on the regression model which is stated by a very important theorem; the Gauss Markov theorem.

The Gauss Markov Theorem

When the first 5 assumptions of the simple regression model are satisfied the parameter estimates are unbiased and 
have the smallest variance among other linear unbiased estimators. The OLS estimators are therefore called BLUE for 
Best Linear Unbiased Estimators.
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The OLS estimators will have the following properties when the assumptions of the regression function 
are fulfilled:

1)	 The estimators are unbiased
That the estimators are unbiased means that the expected value of the parameter equals the true 
population value. That means that if we take a number of samples and estimate the population 
parameters with these samples, the mean value of those estimates will equal the population value 
when the number of samples goes to infinity. Hence, on average we would be correct but it is 
not very likely that we will be exactly right for a given sample and a given set of parameters. 

Unbiased estimators implies that

[ ] 00 BbE =

[ ] 11 BbE =

2)	 Minimum variance: Efficiency of unbiased estimators
When the variance is best, it means that it is efficient and that no other linear unbiased 
estimator has a better precision (smaller variance) of their estimators. It requires that the 
variance is homoscedastic and that it is not autocorrelated over time. Both these two issues 
will be discussed in chapter 9 and 10. 

3)	 Consistency
Consistency is another important property of the OLS estimator. It means that when the sample 
size increase and goes to infinity, the variance of the estimator has to converge to zero and the 
parameter estimates converge to the population parameters. An estimator can be biased and 
still consistent but it is not possible for an estimator to be unbiased and inconsistent. 

4)	 Normally distributed parameters
Since the parameters are weighted averages of the dependent variable they can be treated as a 
means. According to the central limit theorem, the distribution of means is normally distributed. 
Hence, the OLS estimators are normally distributed in sufficiently large samples.
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4	 Statistical inference
Statistical inference is concerned with the issue of using a sample to say something about the corresponding 
population. Often we would like to know if a variable is related to another variable, and in some cases 
we would like to know if there is a causal relationship between factors in the population. In order to 
find a plausible answer to these questions we need to perform statistical tests on the parameters of our 
statistical model. In order to carry out tests we need to have a test function and we need to know the 
sampling distribution of the test function. 

In the previous chapter we saw that the estimators for the population parameters were nothing more 
than weighted averages of the observe values of the dependent variable. That is true for both the intercept 
and the slope coefficient. Furthermore, the distribution of the dependent variable coincides with the 
error term. Since the error term by assumption is normally distributed, the dependent variable will be 
normally distributed as well. 

According to statistical theory we know that a linear combination of normally distributed variables 
is also normally distributed. That implies that the distribution of the two OLS estimators is normally 
distributed with a mean and a variance. In the previous chapter we derived the expected value and the 
corresponding variance for the estimators, which implies that we have all the information we need about 
the sampling distribution for the two estimators. That is, we know that:
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Just as for a single variable, the OLS estimators works under the central limit theorem since they can 
be treated as means (weighted averages) calculated from a sample. When taking the square root of the 
estimated variances we receive the corresponding standard deviations. However, in regression analysis we 
call them standard errors of the estimator instead of standard deviations. That is to make it clear that 
we are dealing with a variation that is due to a sampling error. Since we use samples in our estimations, 
we will never receive estimates that exactly equal the corresponding population parameter. It will almost 
always deviate to some extent. The important point to recognize is that this error on average will be 
smaller the larger the sample become, and converge to zero when the sample size goes to infinity. When an 
estimator behaves in this way we say that the estimator is consistent as described in the previous chapter. 
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4.1	 Hypothesis testing

The basic steps in hypothesis testing related to regression analysis are the same as when dealing with 
a single variable, described in earlier chapters. The testing procedure will therefore be described by an 
example. 

Example 4.1 

Assume the following population regression equation:

UXBBY ++= 10 � (4.3)

Using a sample of 200 observations we received the following regression results:

� (4.4)
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The regression results in (4.4) present the regression function with the estimated parameters together 
with the corresponding standard errors within parentheses. It is now time to ask the question: Has X 
any effect on Y? In order to answer this question we would like to know if the parameter estimate for 
the slope coefficient is significantly different from zero or not. We start by stating the hypothesis:

0:
0:

11

10

≠
=

BH
BH

� (4.5)

In order to test this hypothesis we need to form the test function relevant for the case. We know that the 
sample estimator is normally distributed with a mean and a standard error. We may therefore transform 
the estimated parameter according to the null hypothesis and use that transformation as a test function. 
Doing that we receive:

Test function:	 � (4.6)

The test function follows a t-distribution with n-k degrees of freedom, where n is the number of 
observations and k the number of estimated parameters in the regression equation (2 in this case). It 
is t-distributed since the standard error of the estimated parameter is unknown and replaced by an 
estimate of the standard error. This replacement increases the variation of the test function compared 
to what had been the case otherwise. The test function would have been normal if the standard error 
have been known. However, since the number of observations is sufficiently large, the extra variation 
will not be of any major importance. If the null hypothesis is true the mean of the test function will be 
zero. If that is not the case the test function will receive a large value in absolute terms. Let us calculate 
the test value using the test function:

Test value:	 2.2
213.0

0469.0
=

−
=t � (4.7)

The final step in the test procedure is to find the critical value that the test value will be compared with. 
If the test value is larger than the critical value in absolute terms we reject the null hypothesis. Otherwise, 
we just accept the null hypothesis and say that it is possible that the population parameter is equal to 
zero. In order to find the critical value we need a significance level, and it is the test maker that set this 
level. In this example we choose the significance level to be at the 5% level. Since the degrees of freedom 
equals 198 the critical value found in most tables for the t-distribution will coincide with the critical 
value taken from the normal distribution table. In this particular case we receive:

� (4.8)

Since the test value is larger than the critical value we reject the null hypothesis and claim that there is 
a positive relation between X and Y. 
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4.2	 Confidence interval

An alternative approach to the test of significance approach described by the example in the previous 
section is the so called confidence interval approach. The two approaches are very much related to 
each other. The idea is to create an interval estimate for the population parameter instead of working 
with a point estimate. 

The basic steps are about the same. All tests need to start from some hypothesis and we will use (4.5) 
in this example. By choosing a 5% significance level and the corresponding critical values from the 
t-distribution table we may form the following interval:

� (4.9)

This expression says that there is a 95% chance that a t-value with 198 degrees of freedom lies between 
the limits given by the interval. In order to form a confidence interval for our case we substitute the test 
function (4.6) into (4.9). That will result in the following expression:

which may be transformed in the following way:

which provides a 95% confidence interval for B1. Hence, there is a 95% chance that the given interval 
will cover the true population parameter value. Alternatively, in repeated sampling the interval will cover 
the population parameter in 95 cases out of 100 on average. 

If the confidence interval does not cover the value given by the null hypothesis (zero in this case) we 
will be able to reject the null hypothesis. By plugging in the values, we receive a confidence interval that 
may be expressed in the following way:

which in this case equals
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Remember that, since both the parameter and the corresponding standard errors are estimates based on 
sample information, the interval is random. One should therefore not forget that it is the interval that 
with a certain probability will cover the true population parameter, and not the other way around. Two 
important concepts to remember and distinguish in these circumstances are the confidence level and 
significance level. They are defined in the following way:

Confidence level

The percent of the times that the constructed confidence interval will include the population parameter. When it is 
expressed as a percent, it is sometimes called the confidence coefficient.

Significance level

The probability of rejecting a true null hypothesis.

Hence, before being able to construct a confidence interval we have to pick a significance level, which 
is usually set to 5 percent. Given the significance level we know that the confidence level of our test or 
corresponding interval will be 95 percent. The significance level is often denoted with the Greek letter 
α, which implies that the confidence level equals 1-α. 
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4.2.1	 P-value in hypothesis testing

Most econometric software that produces regression output report p-values related to each estimated 
parameter. To investigate the p-value is a fast way to reach the conclusion that we otherwise would receive 
by carrying out all the steps in the test of significance approach or the confidence interval approach. By 
looking at the p-value we can directly say if the parameter is significantly different from zero or not. 

The P-value for sample outcome

The P-value for a sample outcome is the probability that the sample outcome could have been more extreme than 
the observed one.

If the P-value equals or is greater then the specified significance level: H0 is concluded.

If the P-value is less than the specified significance level: H1 is concluded. 

 Regression output from Excel  

Intercept 9.333333 9.0973966 1.0259345 0.334940 -11.645314 30.31198 1
X 7.121212 1.4661782 4.8569893 0.001260 3.7401968 10.50222 7

 Table 4.1 Regression output from Excel

In Table 4.1 we have an example of how regression output could look like. This particular output is 
generated using MS Excel, but most statistical software offers this information in their output. The 
example is based on a random sample of 10 observations. 

Observe that regression outputs always assumes a two sided test. That has implications on the P-value. 
The P-Value in this particular case can therefore be calculated as

...3349.0...)0259.1(...)0259.1(...)0259.1|(| =≥+−≤=≥ tPtPtP

The P-value from a one-sided hypothesis would therefore be

1675.02/...3349.0...)0259.1( ==≥tP

Since the P-value for the intercept is larger than any conventional significance levels, say 5 percent, we 
can not reject the null hypothesis that the intercept is different from zero. For the slope coefficient on the 
other hand the P-value is much smaller than 5 percent and therefore we can reject the null hypothesis 
and say that it is significantly different from zero. 
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4.3	 Type I and type II errors

Whenever working with statistical tests there is a chance that the conclusion from the test could be 
wrong. We could accept a false null hypothesis and we could reject a correct null hypothesis. Hence, 
in order for decision rules or tests of hypothesis to be good, they must be designed so as to minimize 
the errors of decision. For a given sample size this is a difficult task, since any attempt to minimize 
one of them results in increasing the other kind. The only way to reduce the chance of both types is by 
increasing the sample size. The two types of errors mentioned above are referred to as the type I error 
and the type II error.

The type I error 

The probability to reject a correct null hypothesis.

	

The type II error

The probability to accept a false null hypothesis

	

An additional concept related to the two types of errors is the so called power of the test. The power 
of the test is the probability to identify a false null hypothesis. It is always the case that we would like 
the power of the test to be as large as possible. However, since we need to know the true value of the 
population parameter we will never be able to calculate the type II error and the corresponding power of 
the test in practice. But for a given sample we must remember that the smaller we choose the significance 
level, the larger become the type II error and the smaller become the power of the test. 

The power of a test

The probability to reject a false null hypothesis
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True state of nature
Researcher’s decision

Accept H0 Reject H0

H0 is true
1-α

The confidence level

α (Type I error)

The significance level

H0 is false β (Type II error)
1-β 

The power

Table 4.2 Errors in hypothesis testing

Example 4.2

To better understand the mechanism of the two types of errors we will consider an example were we 
calculate the probabilities for each cell given in Table 4.2. Let us use the regression results from Example 4.1 
and focus on the slope coefficient. 

In that example we had a significance level of 5 percent. It was our choice, and hence we have specified that 
the probability to reject a correct null hypothesis should be at most 5 percent. Given the significance level 
we can calculate the interval that will be used as a decision rule for our test. If the estimated parameter 
is within the interval we will accept the null hypothesis, and if it is located outside the interval we will 
reject the null hypothesis. 
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In Example 4.1 the null hypothesis stated that the population parameter equals zero. Together with the 
estimated standard error we know the distribution of the estimated parameter when the null hypothesis 
is correct. That is 

( ))(,0~ 11 bVNb

Hence, an interval that covers 95 percent of the distribution is given by the endpoints of the confidence 
interval. For this particular case we have the following interval:

� (4.10)

Therefore, if our estimator comes from a distribution with mean zero, there is a 95 percent chance that it 
will be located in the above mentioned interval. The interval can therefore be seen as a decision rule. If 
the estimated parameter value takes a value within this interval, we should conclude that it comes from 
a distribution with mean zero. Since we decided about the significance level we know the probability of 
the type I error, since they always coincide. We will therefore move on and calculate the type II error. 

In order to be able to calculate the type II error we need to know the true value, that is, we need to 
know the population value of the parameter. That will never happen in reality, but by assuming different 
values one can receive a picture of the size of the possible chance of decision error. In this example we 
will assume that we know the value and that it equals 0.25. Given this value we have a new distribution 
for our estimator that we will use when calculating the probability of a type II error, namely:

� (4.11)

This is the distribution related to the alternative hypothesis. In order to find the probability of a type II 
error we simply calculate how large part of this distribution that overlap the region of our decision rule 
given by interval (4.10). That is, we have to calculate the following probability using the distribution 
given by (4.11):

β=≤≤− )41748.041748.0( 1bP

In order to calculate this probability we have to use the t-value transformation and use the table for the 
t-distribution to find the probability. The following steps need to be done:
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Hence, with this setup there is a 78 percent chance of committing a type II error. The only way to reduce 
this probability is to increase the number of observations in the sample. If that is not possible you are 
stuck with a problem. Observe that if you decide to decrease the probability of the type I error further, the 
interval given by (4.10) will be even wider. When that happens, a larger portion of the true distribution 
will be covered, and hence increase the type II error. 

Once the type II probability is calculated it is straight forward to calculate the power of the test. In this 
case the power of the test would be )1( β− =1-0.7821=0.2179. Hence, there is only a 22 percent chance 
to reject a false null hypothesis. 

4.4	 The best linear predictor

Another important use of the regression model is to predict the size of the dependent variable for different 
values of X. Let us start with a definition:

Prediction and Forecasting

To make a statement about an event before the event occurs. In econometrics a statement made in advance about 
the value of a dependent variable using regression results.

The words prediction and forecasting are going to be used interchangeably. However, often the word 
prediction is used for models that covers cross sectional analysis, while predictions made using times 
series models on future events are called forecasting. Since the literature does not show any consensus 
on this part we will treat them synonymously in this text. 

Assume the following population regression equation:

TtUXBBY ttt ,...,1,10 =++=

and we would like to make predictions about the future, that is we would like to know the value of Y in 
period T+1. We have basically two important cases to consider: known values of X or values of X with 
uncertainty. Whether we have exact information about X or not will affect the variance for the predicted 
value. We will start the discussion assuming that the X value is known, and later relax this assumption to 
explore the difference. The exact value of the population parameters is never an issue, and it is therefore 
obvious that they have to be estimated. 

The predicted value of the dependent variable is therefore given by the conditional expectation of the 
dependent variable and is denoted in the following way:

[ ] tttt XbbYXYE 10
ˆ| +==
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where the population parameters has been replaced by the sample estimators. Since the sample estimators 
are the same for all t, it is the value of Xt that generates the forecast for Yt. Hence the forecast value of 
Y in period T+1 is therefore given by:

1101
ˆ

++ += TT XbbY

This is often called a point prediction. In order to make inference on the future, we need an interval 
prediction as well, that is, we need to calculate the forecast error. The forecast error will help us say 
something about how good the prediction is. The forecast error is the difference between the predicted 
value and the actual value and may be expressed in the following way:

( ) ( )110111011
ˆ

+++++ +−++=− TTTTT XbbUXBBYY

	   ( ) ( ) 111100 ++ +−+−= TT UXbBbB

Now, what is the expected value of the forecast error:
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The words prediction and forecasting are going to be used interchangeably. However, often the word 
prediction is used for models that covers cross sectional analysis, while predictions made using times 
series models on future events are called forecasting. Since the literature does not show any consensus 
on this part we will treat them synonymously in this text.  

Assume the following population regression equation: 

TtUXBBY ttt ,...,1,10

and we would like to make predictions about the future, that is we would like to know the value of Y in 
period T+1. We have basically two important cases to consider: known values of X or values of X with 
uncertainty. Whether we have exact information about X or not will affect the variance for the 
predicted value. We will start the discussion assuming that the X value is known, and later relax this 
assumption to explore the difference. The exact value of the population parameters is never an issue, 
and it is therefore obvious that they have to be estimated.  

The predicted value of the dependent variable is therefore given by the conditional expectation of the 
dependent variable and is denoted in the following way: 

tttt XbbYXYE 10
ˆ|

where the population parameters has been replaced by the sample estimators. Since the sample 
estimators are the same for all t, it is the value of Xt that generates the forecast for Yt. Hence the 
forecast value of Y in period T+1 is therefore given by: 

1101
ˆ

TT XbbY

This is often called a point prediction. In order to make inference on the future, we need an interval 
prediction as well, that is, we need to calculate the forecast error. The forecast error will help us say 
something about how good the prediction is. The forecast error is the difference between the predicted 
value and the actual value and may be expressed in the following way: 
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Now, what is the expected value of the forecast error: 
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Statistical inference

Since the expected value of the forecast error is zero, we have an unbiased forecast. Assuming that X is 
known, the variance of the forecast error is given by:

[ ] ( ) ( )[ ]2111100
2

11
ˆ

++++ +−+−=− TTTT UXbBbBEYYE

		  [ ] ( )[ ] [ ] ( )( )[ ]11100
2

1
2
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2

00 2 +++ −−++−+−= TTT XbBbBEUEXbBEbBE

		  ( ) ( ) ( ) ( ) 110
2

110 ,2 ++ +++= TT XbbCovUVXbVbV

assuming that X is constant in repeated sampling. Replacing the variances and the covariance with the 
expression for the sample estimators and rearrange we end up with the following expression:
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Observe that the forecast error variance is smallest when the future value of X equals the mean value of 
X. This formula is true if the future value of X is known. That is often not the case and hence the formula 
has to be elaborated accordingly. One way to deal with the uncertainty is to impose a distribution for X, 
with a component of uncertainty. That is, assume that

( )2
11

*
1 ,0~, εσεε NXX TTT +++ +=
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With this assumption we may form an expression for the error variance that takes the extra variation 
from the uncertainty into account:
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The important point to notice here is that this variance is impossible to estimate unless we know the 
exact value of the variance for the uncertainty. That is of course not possible. Furthermore, the expression 
involves the population parameter multiplied with the variance of the uncertainty. Hence, in practice 
(4.12) is often use, but one should hold in mind that it most likely is an understatement of the true 
forecast error variance. 

Taking the square root of the variance in (4.12) or (4.13) gives us the standard error of the forecast. With 
this standard error it is possible to calculate confidence interval around the predicted values using the 
usual formula for a confidence interval, that is:

Confidence interval of a forecast

fcT tY σ×±+1
ˆ
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5	 Model Measures
In the previous chapters we have developed the basics of the simple regression model, describing how 
to estimate the population parameters using sample information and how to perform inference on the 
population. But so far we do not know how well the model describes the data. The two most popular 
measures for model fit are the so called coefficient of determination and the adjusted coefficient of 
determination. 

5.1	 The coefficient of determination (R2)

In the simple regression model we explain the variation of one variable with help of another. We can do 
that because they are correlated. Had they not been correlated there would be no explanatory power in 
our X variable. In regression analysis the correlation coefficient and the coefficient of determination are 
very much related, but their interpretation differs slightly. Furthermore, the correlation coefficient can 
only be used between pairs of variables, while the coefficient of determination can connect a group of 
variable with the dependent variable. 
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In general the correlation coefficient offers no information about the causal relationship between two 
variables. But the attempt of this chapter is to put the correlation coefficient in a context of the regression 
model and show under what conditions it is appropriate to interpret the correlation coefficient as a 
measure of strength of a causal relationship. 

The coefficient of determination tries to decompose the average deviation from the mean into an 
explained part and an unexplained part. It is therefore natural to start the derivation of the measure 
from the deviation from the mean expression and then introduce the predicted value that comes from 
the regression model. That is, for a single individual we have: 
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5. Model measures 

In the previous chapters we have developed the basics of the simple regression model, describing how 
to estimate the population parameters using sample information and how to perform inference on the 
population. But so far we do not know how well the model describes the data. The two most popular 
measures for model fit are the so called coefficient of determination and the adjusted coefficient of 
determination.   

5.1 The coefficient of determination (R2)

In the simple regression model we explain the variation of one variable with help of another. We can 
do that because they are correlated. Had they not been correlated there would be no explanatory power 
in our X variable. In regression analysis the correlation coefficient and the coefficient of determination 
are very much related, but their interpretation differs slightly. Furthermore, the correlation coefficient 
can only be used between pairs of variables, while the coefficient of determination can connect a 
group of variable with the dependent variable.  

In general the correlation coefficient offers no information about the causal relationship between two 
variables. But the attempt of this chapter is to put the correlation coefficient in a context of the 
regression model and show under what conditions it is appropriate to interpret the correlation 
coefficient as a measure of strength of a causal relationship.  

The coefficient of determination tries to decompose the average deviation from the mean into an 
explained part and an unexplained part. It is therefore natural to start the derivation of the measure 
from the deviation from the mean expression and then introduce the predicted value that comes from 
the regression model. That is, for a single individual we have:   

dUnexplaineExplained

ˆˆˆˆ
iiiiiii YYYYYYYYYY   (5.1) 

We have to remember that we try to explain the deviation from the mean value of Y, using the 
regression model. Hence, the difference between the expected value iŶ  and the mean value Y  will 
therefore be denoted as the explained part of the mean difference. The remaining part will therefore 
be denoted the unexplained part. With this simple trick we decomposed the simple mean difference 
for a single observation. We must now transform (5.1) into an expression that is valid for the whole 
sample, that is for all observations. We do that by squaring and summing over all n observations: 

n

i
iiiiii

n

i
iii

n

i
i YYYYYYYYYYYYYY

1

22
2

11

2 ˆˆ2ˆˆˆˆ

It is possible to show that the sum of the last expression on the right hand side equals zero. With that 
knowledge we may write: 
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the unexplained part. With this simple trick we decomposed the simple mean difference for a single 
observation. We must now transform (5.1) into an expression that is valid for the whole sample, that is 
for all observations. We do that by squaring and summing over all n observations:
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It is possible to show that the sum of the last expression on the right hand side equals zero. With that 
knowledge we may write:
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With these manipulations we end up with three different components. On the left hand side we have 
the total sum of squares (TSS) which represents the total variation of the model. On the right hand side 
we first have the Explained Sum of Squares (ESS) and the second component on the right hand side 
represents the unexplained variation and is called thee Residual Sum of Squares (RSS).  

Caution: be careful when using different text books. The notation is not consistent in the literature so 
it is always important to make sure that you know what ESS and RSS stands for.  

The identity we have found may now be expressed as: 

RSSESSTSS

which may be rewritten in the following way: 

1
TSS
RSS

TSS
ESS

TSS
TSS
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With these manipulations we end up with three different components. On the left hand side we have 
the total sum of squares (TSS) which represents the total variation of the model. On the right hand side 
we first have the Explained Sum of Squares (ESS) and the second component on the right hand side 
represents the unexplained variation and is called thee Residual Sum of Squares (RSS). 

Caution: be careful when using different text books. The notation is not consistent in the literature so 
it is always important to make sure that you know what ESS and RSS stands for. 

The identity we have found may now be expressed as:

RSSESSTSS +=
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which may be rewritten in the following way:

1=+=
TSS
RSS

TSS
ESS

TSS
TSS

Hence, by dividing by the total variation on both sides we may express the explained and unexplained 
variation as shares of the total variation, and since the right hand side sum to one, the two shares can 
be expressed in percentage form. We have

TSS
ESS = the share of the total variation that is explained by the model

TSS
RSS = the share of the total variation that is unexplained by the model

The coefficient of determination

The percent of variation in the dependent variable associated with or explained by variation in the independent 
variable in the regression equation:

	 TSS
RSS

TSS
ESSR −== 12

, 10 2 ≤≤ R

Example 5.1

Assume that a simple linear regression model estimated an R2 equal to 0.65. That would imply that 65 
percent of the total variation around the mean value of Y is explained by the variable X included in the 
model. 

In the simple regression model there is a nice relationship among the measures of sample correlation 
coefficient, the OLS estimator of the slope coefficient, and the coefficient of determination. To see this 
we may rewrite the explained sum of squares in the following way:
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Using this transformation we may re-express the coefficient of determination:
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where XS and YS  represents the sample standard deviation for X and Y respectively. Furthermore 
we can establish a relation between the OLS slope estimator and the correlation coefficient between X  
and Y.

� (5.4)

where  represents the sample covariance between X and Y, and r the sample correlation coefficient 
for X and Y. Hence, substituting (5.4) into (5.3) shows the relation between the sample correlation 
coefficient and the coefficient of determination. 
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
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Hence, in the simple regression case the square root of the coefficient of determination is the absolute 
value of the sample correlation coefficient:

2|| Rr = � (5.6)
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This means that the smaller the correlation between X and Y, the smaller is the explained share of the 
variation by the model, which is the same as to say that the larger is the unexplained share of the variation. 
That is, the more disperse the sample points are from the regression line the smaller is the correlation 
and the coefficient of determination. This leads to an important conclusion about the importance of the 
coefficient of determination:

R2 and the significance of the OLS estimators

An increased variation in Y, with an unchanged variation in X, will directly reduce the size of the coefficient of 
determination. But it will not have any effect on the significance of the parameter estimate of the regression model. 

From (5.3)–(5.6) it is clear that an increased variation in Y will reduce the size of the coefficient 
of determination of the regression model. However, when the variation in Y increases, so will the 
covariance between Y and X which will increase the value of the parameter estimate. It is therefore  
not obvious that the significance of the parameter will be unchanged. By creating the t-ratio we can see 
that:

where S represents the standard deviation of the residual. The expression for the standard error of the 
OLS estimator was derived in the previous chapter. Now, lets us see what happens with the t-value if we 
increase the variation of Y with a constant c. 

Hence, increasing the variation of Y with a constant c, has no effect what so over on the t-value. We 
should therefore draw the conclusion that the coefficient of determination is just a measure of linear 
strength of the model and nothing else. As an applied researcher it is far more interesting and important 
to analyze the significance of the parameters in the model which is related to the t-values. 
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5.2	 The adjusted coefficient of determination (Adjusted R2)

The coefficient of determination can be used to describe the linear strength between the dependent 
and independent variables in a regression model. But its size is dependent on the degrees of freedom. 
Therefore it is not meaningful to compare R2 between two different models with different degrees of 
freedom. A solution to this problem is to control for the degrees of freedom and adjust the coefficient 
of determination accordingly. That could be done in the following way:

)(
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)2/(12
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nTSS
nRSSR −=
−
−

−= � (5.7)

where 2R denotes the adjusted coefficient of determination. The adjusted coefficient of determination 
can also be expressed as a function of the unadjusted coefficient of determination in the following way:
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It turns out that the adjusted R2 is always lower than the unadjusted R2, and when the number of 
observations increases they converge to each other. Using equation (5.7) we see that the adjusted 
coefficient of determination is a function of the variance of Y as well as the variance of the residual. 
Rearranging (5.7) we receive that

( ) 222 1)( YSReVarS −==

As can be seen, the larger the adjusted R2, the smaller become the residual variance. Another interesting 
feature of the adjusted R2 is that it can be negative, an event impossible for the unadjusted R2. That is 
especially likely to happen when the number of observations are low, and the unadjusted R2 is small, 
let’s say around 0.06. 

Another important point to understand is that the coefficient of determination only can be compared 
between models when the dependent variable is the same. If we have Y in one model and ln(Y) in another, 
the dependent variable is transformed and should not be treated as the same. It is for that reason not 
meaningful to compare the adjusted or unadjusted R2 between these two models. 
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5.3	 The analysis of variance table (ANOVA)

Almost all econometric software generates an ANOVA table together with the regression results. An 
ANOVA table includes and summarizes the sum of squares calculated above:

Source of Variation Degrees of freedom Sum of Squares Mean Squares

Explained 1 ESS ESS/1

Unexplained n-2 RSS RSS/(n-2)=MSE=S2

Total n-1 TSS

Table 5.1 The ANOVA Table

The decomposition of the sample variation in Y can be used as an alternative approach of performing test 
within the regression model. We will look at two examples that work for the simple regression model. 
In the multiple regression case we have an even more important use, which will be described in chapter 
6, and is related to simultaneous test on subsets of parameters.

Assume that we are working with the following model:

iii UXBBY ++= 10
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Using a random sample we calculated the components of the ANOVA table and want to perform a test 
for the following hypothesis:

0:
0:

11

10

≠
=

BH
BH

Remember that the ANOVA table contains information about the explained and unexplained variation. 
Hence if the explained part increases sufficiently by including X, we would be able to say that the alternative 
hypothesis is true. One way to measure this increase would be to use the following ratio: 

 variancedUnexplaine
by  explained  varianceAdditional XF = � (5.8)

In the numerator of equation (5.8) we have the change in explained sum of squares divide by the degrees 
of freedom that come from including an additional variable in the regression model. Since this is a 
simple regression model the explained part goes from zero since no other variables are included and 
therefore the degrees of freedom equals one. Hence, the expression in the numerator is therefore simply 
the ESS. In the denominator we have the variance of the residual. It turns out that the ratio of the two 
components has a known distribution that is tractable to work with. That is:

)2,1(~
)2/(

1/
−−

= nF
nRSS

ESSF � (5.9)

Hence, we have a test function that is F-distributed with 1 and n-2 degrees of freedom. 

Example 5.2

Assume that we have a sample of 145 observations and that we would like to know if the random variable 
X has any effect on the dependent variable Y. In order to answer this question we form a simple regression 
model, and form the following hypothesis: 0: 10 =BH  vs. 0: 11 ≠BH . Use the following information 
to perform the test:

5232,51190 == RSSESS

In order to carry out the test, we form the test function and calculate the corresponding test value. Using 
(5.9) we receive:

1.1399
)2145/(5232

1/51190
=

−
=F

With a significance level of 5 percent we receive the following upper critical value, 13.5)143,1(025.0 =F 5.13, 
which is very much lower than the test value. Hence we can reject the null hypothesis and conclude 
that X has a significant effect on Y. 

Download free eBooks at bookboon.com



Econometrics

69 

Model Measures

When using the ANOVA table to perform a test on the parameters of the model we call this the test 
of over all significance. In the simple regression model case it involves just one single parameter, but 
in the multiple variable case the test consider the joint hypothesis that all the included variables have a 
joint effect that is zero. We will speak more about this in the next chapter. 

In the simple regression case the F-test corresponds to the simple t-test related to the slope  
coefficient. But how are these two test functions connected. To see this, we may rewrite the F-test in 
the following way:
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The F-statistic in this case is nothing more than the square of the t-statistic of the regression 
coefficient. Hence, the outcomes of the two procedures are always consistent.  
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The F-statistic in this case is nothing more than the square of the t-statistic of the regression coefficient. 
Hence, the outcomes of the two procedures are always consistent. 
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6	 The multiple regression model
From now on the discussion will concern multiple regression analysis. Hence, the analysis will be assumed 
to include all relevant variables that explain the variation in the dependent variable, which almost always 
includes several explanatory variables. That has consequences on the interpretation of the estimated 
parameters, and violations of this condition will have consequences that will be discussed in chapter 7. 
This chapter will focus on the differences between the simple and the multiple-regression model and 
extend the concepts from the previous chapters. 

6.1	 Partial marginal effects

For notational simplicity we will use two explanatory variables to represent the multiple-regression model. 
The population regression function would now be expressed in the following way: 

UXBXBBY +++= 22110 � (6.1)

By including another variable in the model we control for additional variation that is attributed to that 
variable. Hence coefficient B1 represents the unique effect that comes from X1, controlling for X2, which 
means that, any common variation between X1 and X2 will be excluded. We are talking about the partial 
regression coefficient. 

Example 6.1

Assume that you would like to predict the value (sales price) of a Volvo S40 T4 and we have access 
to a data set including the following variables: sale price (P) the age of the car (A) and the number of 
kilometers the car has gone (K). We set up the following regression model:

UKBABBP +++= 210 � (6.2)

The model offers the following two marginal effects:

1B
A
P
=

∂
∂

 � (6.3)

2B
K
P
=

∂
∂ � (6.4)
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The first marginal effect (6.3) represents the effect from a unit change in the age of the car on the 
conditional expected value of sales prices. When the age of the car increase by one year, the mean sales 
price change by B1 Euros when controlling for number of kilometers. It is reasonable to believe that the 
age of the car is correlated with the number of kilometers the car has gone. That means that some of the 
variations in the two variables are common in explaining the variation in the sales price. That common 
variation is excluded from the estimated coefficients. The partial effect that we seek is therefore the 
unique effect that comes from the aging of the car. 

Accordingly, the second marginal effect (6.4) represents the unique effect that each kilometer has on 
the sales price of the car, controlling for the age of the car. The way the model is specified here, imply 
that the unique effect on the sales price from each kilometer is the same whether the car is new or if it 
is 10 years old, which means that the marginal effects are independent of the level of A and K. If this is 
implausible, one could adjust for it. 

One way to extend the model and control for additional variation would be to include squared terms as 
well as cross products. The extended model would then be:

UKABKBKBABABBP +×+++++= 5
2

43
2

210 � (6.5)

Extending the model in this way would results in the following two marginal effects:

KBABB
A
P

521 2 ++=
∂
∂ � (6.6)

ABKBB
K
P

543 2 ++=
∂
∂ � (6.7)

Equation (6.6) is the marginal effect on sales price from a unit increase in age. It is a function of how old 
the car is and how many kilometer the car has gone. In order to receive a specific vale for the marginal 
effect we need to specify values for A and K. Most often those values would be mean values of A and 
K, unless other specific values are of particular interest. The marginal effects given by (6.6) and (6.7) 
consist of three parameter estimates, which individually can be interpreted.

Focusing on (6.6) the first parameter estimate is B1. It should be regarded as an intercept, and as such has 
limited interest. Strictly speaking it represents the marginal effect, when A and K both are zero, which 
would be when the car was new. 

The second parameter is B2 that accounts for any non-linear relation between A and P. To include a squared 
term is therefore a way to test if the relation is non-linear. If the estimated coefficient is significantly 
different from zero we should conclude that non-linearity is present and controlling for it would be 
necessary. Failure to control for it, would lead to a biased marginal effect since it would be assumed to 
be constant, when it in fact vary with the level of A. 
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The third parameter B5 controls for any synergy effect that could possible exist between the two 
explanatory variables included. It is not obvious that such effect would exist in the Volvo S40 example. 
In other areas of economics the effect is more common. For instance in the US wage equation literature: 
being black and being a woman are usually two factors that have negative effects on the wage rate. 
Furthermore, being a black woman is a combined effect that further reduces the wage rate. This would 
be an example of a negative synergy effect. 

6.2	 Estimation of partial regression coefficients

The mathematics behind the estimation of the OLS estimators in the multiple regression case is very 
similar to the simple model, and the idea is the same. But the formulas for the sample estimators are 
slightly different. The sample estimators for model (6.2) are given by the following expressions:	

22110 XbXbYb −−= � (6.8)

� (6.9)

� (6.10)
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where 1YS is the sample covariance between Y and X1,  is the sample correlation between X1 and X2, 

2Yr is the sample correlation between Y and X2, YS is the sample standard deviation for Y, and 1S is the 
sample standard deviation for X1. Observe the similarity between the sample estimators of the multiple-
regression model and the simple regression model. The intercept is just an extension of the estimator 
for the simple regression model, incorporating the additional variable. The two partial regression slope 
coefficients are slightly more involved but possess an interesting property. In case of (6.9) we have that

That is, if the correlation between the two explanatory variables is zero, the multiple regression coefficients 
coincide with the sample estimators of the simple regression model. However, if the correlation between 
X1 and X2 equals one (or minus one), the estimators are not defined, since that would lead to a division by 
zero, which is meaningless. High correlation between explanatory variables is referred to as a collinearity 
problem and will be discussed further in chapter 11. Equation (6.8)-(6.10) can be generalized further 
to include more parameters. When doing that all par wise correlations coefficients are then included in 
the sample estimators and in order for them to coincide with the simple model, they all have to be zero. 

The measure of fit in the multiple regression case follows the same definition as for the simple regression 
model, with the exception that the coefficient of determination no longer is the square of the simple 
correlation coefficient, but instead something that is called the multiple-correlation coefficient. 

In multiple regression analysis, we have a set of variables X1, X2, … that is used to explain the variability 
of the dependent variable Y. The multivariate counterpart of the coefficient of determination R2 is the 
coefficient of multiple determination. The square root of the coefficient of multiple determination is the 
coefficient of multiple correlation, R, sometimes just called the multiple R. The multiple R can only take 
positive values as appose to the simple correlation coefficient that can take both negative and positive 
values. In practice this statistics is of minor importance, even though it is reported in output generated 
by softwares such as Excel. 

6.3	 The joint hypothesis test 

An important application of the multiple regression analysis is the possibility to test several parameters 
simultaneously. Assume the following multiple-regression model:

UXBXBXBBY ++++= 3322110 � (6.11)
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Using this model we may test the following hypothesis:

a)	 0: 10 =BH 	 vs. 0: 11 ≠BH  
b)	 0: 210 == BBH  vs. H1: H0 not true
c)	 0: 3210 === BBBH  vs. H1: H0 not true

The first hypothesis concerns a single parameter test, and is carried out in the same way here as was done 
in the simple regression model. We will therefore not go through these steps again but instead focus on 
the simultaneous tests given by hypothesis b and c.

6.3.1	 Testing a subset of coefficients 

The hypothesis given by (b) represents the case of testing a subset of coefficients, in a regression model 
that contains several (more than two) explanatory variables. In this example we choose to test B1 and B2 
but it could of course be any other groups of coefficients included in the model. Let us start by rephrasing 
the hypothesis, with the emphasis on the alternative hypothesis:

0: 210 == BBH

It is often believed that in order to reject the null hypothesis, both (all) coefficients need to be different 
from zero. That is just wrong. It is important to understand that the complement of the null hypothesis 
in this situation is represented by the case where at least one of the coefficients is different from zero.

Whenever working with test of several parameters simultaneously we cannot use the standard t-test, but 
instead we should be using an F-test. An F-test is based on a test statistic that follows the F-distribution. 
We would like to know if the model that we stated corresponds to the null hypothesis, or if the alternative 
hypothesis is a significant improvement of the fit. So, we are basically testing two specifications against 
each other, which are given by:

Model according to the null hypothesis:	  	 UXBBY ++= 330 � (6.12)

Model according to the alternative hypothesis:	 UXBXBXBBY ++++= 3322110 � (6.13)
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A way to compare these two models is to see how different their RSS (Residual Sum of Squares) are from 
each other. We know that the better fit a model has, the smaller is the RSS of the model. When looking 
at specification (6.12) you should think of it as a restricted version of the full model given by (6.13) 
since two of the parameters are forced to zero. In (6.13) on the other hand, the two parameters are free 
to take any value the data allows them to take. Hence, the two specifications generate a Restricted RSS 
( )RRSS  received from (6.12) and an Unrestricted RSS ( )URSS  received from (6.13). In practices this 
means that you have to run each model separately using the same data set and collect RSS-values from 
each regression and then calculate the test value. 

The test value can be received from the test statistic (test function) given by the following formula:

� (6.14)

where  and  refers to the degrees of freedom for the numerator and denominator respectively. 
The degrees of freedom for the numerator is simply the difference between the degrees of freedom of 
the two Residual Sum of Squares. Hence,  = (n-k1) – (n-k2) = k2-k1. k1 is the number of parameters 
in the restricted model, and k2 is the number of parameters in the unrestricted model. In this case we 
have that k2-k1=2. 
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When there is very little difference in fit between the two models the difference given in the numerator 
will be very small and the F-value will be close to zero. However, if the fit differ extensively, the F-value 
will be large. Since the test statistic given by (6.14) has a known distribution (if the null hypothesis is 
true) we will be able to say when the difference is sufficiently large to say that the null hypothesis should 
be rejected. 

Example 6.2

Consider the two specifications given by (6.12) and (6.13), and assume that we have a sample of 1000 
observations. Assume further that we would like to test the joint hypothesis discussed above. Running 
the two specifications on our sample we received the following information given in Table 6.1. 

The Restricted Model The Unrestricted Model

k1 = 2 k2 = 4

RSS = 17632 RSS = 9324

Table 6.1 Summary results from the two regressions

Using the information in Table 6.1 we may calculate the test value for our test. 

The calculated test value has to be compared with a critical value. In order to find a critical value we 
need to specify a significance level. We choose the standard level of 5 percentage and find the following 
value in the table: 

Observe that the hypothesis that we are dealing with here is one sided since the restricted RSS never can 
be lower than the unrestricted RSS. Comparing the critical value with the test value we see that the test 
value is much larger, which means that we can reject the null hypothesis. That is, the parameters involved 
in the test have a simultaneous effect on the dependent variable that is significantly different from zero. 

6.3.2	 Testing the regression equation

This test is often referred to as the test of the over all significance and by performing the test we ask if 
the included variables has a simultaneous effect on the dependent variable. Alternatively, we ask if the 
population coefficients (excluding the intercept) are simultaneously equal to zero, or at least one of them 
are different from zero. 

In order to test this hypothesis, we compare the following model specifications against each other:

Model according to the null hypothesis:	  	 UBY += 0 � (6.15)

Model according to the alternative hypothesis:	 UXBXBXBBY ++++= 3322110 � (6.16)

Download free eBooks at bookboon.com



Econometrics

77 

The multiple regression model

The test function that should be used for this test is the same in structure as before, but with some 
important differences, that makes it sufficient to estimate just one regression for the full model instead 
of one for each specification. To see this we can rewrite the RRSS in the following way:

( ) ( ) ( ) U

n

i

n

i
ii

n

i
iiR TSSYYbYYYRSS ∑ ∑∑

= ==

=−=−=−=
1 1

22
0

1

2ˆ

Hence the test function can be expressed in sums of squares that could be found in the ANOVA table 
of the unrestricted model. The test function therefore becomes:

Example 6.3

Assume that we have access to a sample of 1000 observations and that we would like to estimate the 
parameters in (6.16), and test the over all significance of the model. Running the regression using our 
sample we received the following ANOVA table:

Variation Degrees of freedom Sum of squares Mean squares

Explained 3 (k-1) 4183 (ESS) 1394.33

Residual 996 (n-k) 1418 (RSS) 1.424

Total 999 (n-1) 5602 (TSS)

Table 6.2 ANOVA table

Using the information from Table 6.2 we can calculate the test value:

This is a very large test value. We can therefore conclude that the included variables explain a significant 
part of the variation of the dependent variable. 
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7	 Specification
The formulation of a satisfactory econometric model is very important if we are to draw any conclusion 
from it. Sometimes the underlying theory of the model gives us guidelines on how it should be specified, 
but in other cases we have to rely on statistical tests. In this chapter we will discuss the most important 
issues related to the formulation and specification of an econometric model. 

7.1	 Choosing the functional form

To choose a correct functional form is very important since it has implication on the interpretation of 
the parameters that are estimated. When formulating the model we need to know how the coefficients 
are to be interpreted, and how the marginal effect and elasticity looks like. Below we will go through 
the most basic functional forms and describe when they can be used. 
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7.1.1	 The linear specification

When talking about a linear specification we have to remember that all models that we are talking about 
in this text are linear in their parameters. Any deviation from linearity may therefore only be related 
to the relation between the variables. The linear specification is appropriate when Y and X has a linear 
relation. The econometric model would then be expressed in this way:

UXBBY ++= 10 � (7.1)

For simplicity reasons we express the model as the simple regression model. With this specification the 
interpretation of the slope coefficient coincide with the marginal effect, which is

� (7.2)

This means that when X increases by 1 unit, Y will change by B1 units. Since it is expressed in units it 
is important to remember in what unit form the data is organized. If Y represents the yearly disposable 
income expressed in thousands of Euro and X represents age given in years, we have to understand that 
a unit change in X represents a year and the corresponding effect in the yearly disposable income is in 
thousands of Euros. 

Since the unit change usually is dependent on the level of the dependent variable the marginal effect has 
some limitation. That is, the effect of a unit change in X may be different whether the level of X is 10 
or if it is 10,000. Therefore economists usually prefer to analyze the elasticities instead of the marginal 
effect, and in the linear model the elasticity is given by:

� (7.3)

which usually is expressed using mean values of X and Y. The elasticity denoted by e is not expressed in 
terms of units, but instead expressed in relative terms. A 1 percent increase in X will result in e percent 
change in Y. 

Example 7.1

Calculate the marginal effect and the elasticity using the regression results in Table 7.1 received from a 
sample of data using model (7.1).

Coefficients Standard error Mean values

Intercept 1.066 4.944 Mean of X 5.5

X 8.557 0.796 Mean of Y 48.1

Table 7.1 Regression results from a model with a linear specification
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The marginal effect from the variable X on Y using the linear specification is received directly from the 
parameter estimate. In this example we receive 

Hence, when X increase by 1 unit, Y increases by 8.6 units. The more important measure of elasticity 
is here given by:

That is, when X increases by 1 percent, the dependent variable Y increases by 0.98 percent. 

7.1.2	 The log-linear specification

In the log linear specification the relationship between X and Y is no longer linear and is written as

� (7.4)

Several factors could motivate this specification. This specification is widely used in the human capital 
literature where economic theory suggests that earnings should be in logarithmic form when estimating 
the return to education on earnings. This could be motivated in the following way: assume that the rate 
of return to an extra year of education is denoted by r. Given an initial period earnings, 0w , the first year 
of schooling would generate an earnings equal to 01 )1( wrw += . After s years of schooling we would 
have an earnings equal to: 0)1( wrw s

s += . Taking the logarithms of this we receive

sBBsrwws 100 )1ln()ln()ln( +=++= � (7.5)

which is a log-linear relationship between years of schooling and earnings. With a similar motivation 
we could include several other variables, such as age and years of work experience which the theory 
states are important factors for the earnings generation. By including an error term we form a statistical 
model in the form of (7.4). How do we interpret the slope parameter? It is important to remember that 
we are primarily intereted in the effect on earnings not the logarithm of the earnings. Hence, it is not 
possible or meaningful to say that a unit increase in s will result in a unit change in the logarithm of 
earnings. Taking the derivative of earnings with respect to schooling gives us the following expression:

� (7.6)

Expression (7.6) shows us that the slope coefficient should be interpreted as the relative change in 
earnings as a ratio of the absolute change in schoolings. In other words, if schooling increase by one 
year, earnings will change by 1001×B  percent. 
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Using (7.6) we see that the marginal effect is given by:

� (7.7)

Hence, the marginal effect is an increasing function of earnings itself. That is, if schooling increases 
by one year, earnings will change by swB ×1 units. Hence the response on the dependent variable will 
change in terms of unit, but is constant in relative terms. 

Using (7.7) we can derive the earnings elasticity with respect to years of schooling:

The earnings elasticity is an increasing function of the number of years of schooling. Hence the longer 
you have studied the larger is the elasticity. 
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7.1.3	 The linear-log specification

In the linear-log model it is the explanatory variable that is expressed and transformed using the 
logarithmic transformation which appears as follows

� (7.8)

Taking the derivative of Y with respect to X we receive:

� (7.9)

Hence, the parameter estimate of the slope coefficient is the absolute change in Y over the relative change 
in X, which is to say that if X increase by 1 percent, the dependent variable Y will change by B1/100 units. 

Using the expression for the coefficient we may write the elasticity as follows:

Hence the elasticity is a function of the dependent variable, and the larger the dependent variable is the 
smaller become the elasticity, everything else equal. 

7.1.4	 The log-log specification

The log-log specification is another important and commonly used specification that can be motivated 
by the economic model. The so called Cobb-Douglass functions are often used as production functions 
in economic theories. They are usually expressed as follows:

� (7.10)

(7.10) is a commonly used production function that is a function of two variables; labor (L) and capital 
(K). This model is multiplicative and non linear in nature which makes it difficult to use. However, there 
is an easy way to make this model linear and that is by taking the logarithm of both sides. Doing that 
and adding an error term we receive:

� (7.11)

Hence, the so called log-log specification requires that both left hand and right hand side of the equation 
are in logarithmic form, and that is what we have in (7.11). Furthermore, it is also linear in the parameters 
which make it easy to estimate statistically. How do we interpret these parameters? Let us focus on B1 
when answering this question. Take the derivative of Q with respect to L and receive:

� (7.12)
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The coefficients of the log-log model are conveniently expressed as elasticities. So the elasticity and the 
coeffieints coincide. Remember that the elasticity is expressed in percentage and not in decimal form 
and hence should not be multiplied by 100. 

The marginal effect of the log-log model can be received from (7.12) and equals:

� (7.13)

which is a function of both Q and L. Hence the marginal effect is increasing in Q and decreasing in L, 
everything else equal. 

7.2	 Omission of a relevant variable

In chapter 3 we described how the error term could be seen as collection of everything that is not 
accounted for by observable variables included in the model. We should also remember that the first 
assumption related to the regression model concerns the fact that all that is relevant should be included 
in the model. What are the consequences of not including everything that is relevant in the model?

In order to answer that question we need to know the meaning of the word relevance. Unfortunately it 
has several meaning and we usually make the distinction between statistical and economic relevance. 
Statistical relevance refers to whether the coefficient is significantly different from zero or not. That is, 
if we are able to reject the null hypothesis. If we are unable to reject the null hypothesis we say that the 
variable has no statistical relevance. 

The economic relevance is related to the underlying theory that the model is based on. Variables are 
included in the model because the economic theory says they should be. That some of the variables  
are not significantly different from zero is not a criterion for exclusion. It is the economic relevance 
that makes the omission of a relevant variable problematic. To see this consider the following  
two specifications:

The correct economic model:		  UXBXBBY +++= 22110 � (7.14)

The estimated model:			   eXbbY ++= 110 � (7.15)

From chapter 3 we know that the sample estimator for the slope coefficient in the simple regression 
model is given by:

�(7.16)
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which may be rewritten as

�(7.17)

Simplify and take the expectation of the estimator: 

� (7.18)
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Hence, the estimator is not unbiased anymore. The expected value of the estimator is a function of the 
true population parameter B1 and the true population parameter B2 times a weight that persist even if 
the number of observations goes to infinity. Failure to include all relevant variables therefore makes 
the coefficients of the included variables biased and inconsistent. However, if the excluded variable is 
statistically independent of the included variable, that is if the covariance between X1 and X2 is zero, 
exclusion will not be a problem, since the second component of (7.18) will equal zero, and the estimator 
will be unbiased. If the model includes several variables and one relevant variable is excluded, the bias will 
affect all the coefficients as long as the corresponding variables are correlated with the excluded variable. 

A common example of this kind of bias appears in the human capital literature when they try to estimate 
the return to education on earnings without including a variable for scholastic ability. The problem is 
common since most data set does not include such information and that scholastic ability is correlated 
with the number of years of schooling as well as earnings. Since scholastic ability is believed to be 
positively correlated with schooling as well as with the earnings, the rates of returns to education are 
usually overestimated, due to the second component in (7.18). 

7.3	 Inclusion of an irrelevant variable

Another situation that often appears is associated with adding variables to the equation that are 
economically irrelevant. The researcher might be keen on avoiding the problem of excluding any relevant 
variables, and therefore include variables on the basis of their statistical relevance. Some of the included 
variables could then be irrelevant economically, which have consequences on the estimated coefficients. 
The important question to ask is what those consequences are. To see what happens when including 
economically irrelevant variables we start by defining two equations:

The correct economic model:		  UXBBY ++= 110 � (7.19)

The estimated model:			   eXbXbbY +++= 22110 � (7.20)

The estimated model (7.20) includes two variables, and X2 is assumed to be economically irrelevant, 
which means that its coefficient is of minor interest. The OLS estimator of the coefficient for the other 
variable is given by:

� (7.21)
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Substitute (7.19) for Y and take the expectation to obtain

Hence, the OLS estimator is still unbiased. However, the standard error of the estimator is larger 
when including extra irrelevant variables, compared to the model where only the relevant variables 
are included, since more variation is added to the model. Therefore, the price of including irrelevant 
variables is in efficiency and the estimator is no longer BLUE. On the other hand loss in efficiency is less 
harmful compared to biased and inconsistent estimates. Therefore, when one is unsure about a model 
specification, one is better off including too many variables, than too few. This is sometimes called 
kitchen-sink regressions. 

7.4	 Measurement errors

Until now we have assumed that all variables, dependent as well as independent, have been measured 
without any errors. That is seldom the case and therefore it is important to understand the consequences it 
has on the OLS estimator. We are going to consider three cases: measurement error in Y only, measurement 
error in X only, and measurement error in both X and Y.

In order to analyze the consequences of the first case we have to assume a structure of the error. We 
assume that the measurement error is random and defined in the following way:

ε+=YY* � (7.22)

where Y* represent the observed variable, Y the true, and ε the random measurement error that is 
independent of Y, with a mean equal to zero and a fixed variance 2

εσ . Assume the following population 
model and substitute (7.22) with Y:

UXBBY ++= 10

UXBBY ++=− 10* ε

*)(* 1010 UXBBUXBBY ++=+++= ε � (7.23)
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The new error term U* would still be uncorrelated with the independent variable X, so the sample 
estimators would still be consistent and unbiased. That is, we have
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where Y* represent the observed variable, Y the true, and  the random measurement error that is 

independent of Y, with a mean equal to zero and a fixed variance 2 . Assume the following 
population model and substitute (7.22) with Y:

UXBBY 10

UXBBY 10*
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The new error term U* would still be uncorrelated with the independent variable X, so the sample 
estimators would still be consistent and unbiased. That is, we have 
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However, the new error would have a variance that is larger than otherwise, that 

is, 22
UUV . Remember that the measurement error is random which imply that the 

population error term is uncorrelated with the measurement error. Hence the two variances only add to 
a larger total variance, which affects the standard errors of the estimates as well. The conclusion is that 
random measurement errors in the dependent variable do not matter much in practice.  
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However, the new error would have a variance that is larger than otherwise, that is, ( ) 22
εσσε +=+ UUV . 

Remember that the measurement error is random which imply that the population error term is uncorrelated 
with the measurement error. Hence the two variances only add to a larger total variance, which affects 
the standard errors of the estimates as well. The conclusion is that random measurement errors in the 
dependent variable do not matter much in practice. 

In the second case the measurement error is attached to the independent variable, still under the 
assumption that the error is random. Assume that the observed variable is defined in the following way:

ε+= XX* � (7.24)

with an error component that is independent of X, has a mean zero and a fixed variance, 2
εσ . When 

the observed explanatory variable is defined in this way the population regression equation is affected 
in the following way. The model we would like to study is defined as

UXBBY ++= 10

but we only observe X*, which implies that the model become

UXBBY +−+= )*(10 ε

**)(* 10110 UXBBBUXBBY ++=−++= ε � (7.25)

The mean value of the new error term is still zero, and the variance is some what inflated compared 
to the case with no measurement error. That is,  Unfortunatelly the 
new error term is no longer uncorrelated with the explanatory variable. The measurement error creates 
a correlation that is different from zero, that bias the OLS estimators. That is
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In the second case the measurement error is attached to the independent variable, still under the 
assumption that the error is random. Assume that the observed variable is defined in the following way: 
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Hence, the covariance is different from zero if there is a linear regression relation between X and Y.
The only way to void this problem is to force the variance of the measurement error to zero. This is of 
course difficult in practice.

The third case considers the combined effects of measurement errors in both the dependent and 
independent variables. This case add nothing new to the discussion since the effect will be the same as 
when just the explanatory variables contains measurement errors. That means that the OLS estimators 
are both biased and inconsistent, and the problem drives primarily from the error that comes from the 
explanatory variable.  
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Hence, the covariance is different from zero if there is a linear regression relation between X and Y. 
The only way to void this problem is to force the variance of the measurement error to zero. This is of 
course difficult in practice. 

The third case considers the combined effects of measurement errors in both the dependent and 
independent variables. This case add nothing new to the discussion since the effect will be the same as 
when just the explanatory variables contains measurement errors. That means that the OLS estimators 
are both biased and inconsistent, and the problem drives primarily from the error that comes from the 
explanatory variable. 
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8	 Dummy variables
Until now all variables have been assumed to be quantitative in nature, which is to say that they have 
been continuous. However, many interesting variables are expressed in qualitative terms, such as gender, 
educational level, time periods and seasons, private or public and so forth. These qualitative measures 
have to be transformed into some proxy so that it could be represented and used in a regression. Dummy 
variables are discrete transformations and used for this purpose. They are artificial variables that work 
as proxies for qualitative variables and since they are discrete we need to be careful when we interpret 
them. The purpose of this chapter is to describe different techniques on how to use dummy variables 
and categorical variables in general and how to interpret them. 

Gender is a typical example of a qualitative variable that need to be transformed into a numerical form 
so that it could be used in a regression. Since gender could be male or female it is a categorical variable 
with two categories. We therefore need to decide what category the dummy should represent and what 
category that should be used as a reference. If the dummy variable should represent men, the discrete 
variable D would take the value 1 for men and the value 0 for all other values in the data set. It is therefore 
important to be sure that all other observations really represent what you want it to represent. A dummy 
variable for men could therefore be expressed in this way: 

� (8.1)

When running the regression you can treat the dummy variable D as any other variables included in 
the model. The variable D could take other numerical values than 1 and 0, for instance 9 and 8, and it 
will not have any effect on its coefficient as long as there is a unit difference between the two values. 
However, the interpretation is easiest when using 1 and 0, which is the reason why we should follow the 
structure of (8.1) which is standard. 

8.1	 Intercept dummy variables

The most basic form of application using dummy variables is when only the intercept is affected. Using 
the categorical variable defined by (8.1) we can form the following model with two explanatory variables. 

UXBDBBY +++= 210 � (8.2)

As can be seen from (8.1) D takes only two values. If we form the conditional expectation with respect 
to the two categories of D we receive:

[ ] XBBBXDYE 210,1| ++== � (8.3)

[ ] XBBXDYE 20,0| +== � (8.4)
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The only thing that differs between the two expectations is the coefficient for the dummy variable. When 
D=1 we see that the conditional expectation in (8.3) consist of two constants B0 and B1 which sum 
represents the intercept in that case. However, when D=0, the conditional expectation will be given by (8.4) 
which only contain one constant B0. Hence, the model as a whole contains two intercepts B0 and B0+B1. 

If we take the difference between the two conditional expectations we receive:

[ ] [ ] 1,0|,1| BXDYEXDYE ==−= � (8.5)

which equals the coefficient for the dummy variable. Since our binary variable D is discrete, we can not 
take the derivative of Y with respect to D, since a derivative requires a continues variable, and therefore 
is undefined here. In order to find the corresponding marginal effect in this case we have to form the 
difference given by (8.5) and conclude that when D moves from 0 to 1, the conditional expectation of Y 
change by B1 units, which represents the marginal effect for the linear model. When working with the 
linear model, it makes no difference if we treat the dummy variable as it was continuous when calculating 
the marginal effect since they become the same. But with other functional forms it makes a difference. 

Example 8.1

Assume the following regression result from a model given by (8.2) with Y being the hourly wage rate, 
D a dummy for men, and X a variable for years of schooling. The dependent variable is expressed in 
Swedish kronor (SEK). Standard errors are given within parenthesis:

Use the regression results to calculate how much higher the average hourly wage rate is for men. First we 
have to check if the coefficient for the male dummy is significant. With a t-value equal to 5 the coefficient 
is significantly different from zero at any conventional significance levels. The marginal effect measured 
with this regression says that men earn 21.9 SEK/hours more than women do on average, controlling 
for years of schooling. 

In the empirical human capital literature the functional form most often used is the log-linear, which 
means that our model would look like this:

� (8.6)

In order to find the marginal effect here, we have to remember that it is the effect on Y that is of interest, 
not lnY. Therefore, the first step must be to transform the regression equation using the anti log and 
form the conditional expectation of Y. Doing that we receive:

)2/( 2
210ˆ UXBDBBeY σ+++= � (8.7)
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where 2
Uσ  represents the population variance of the error term. Hence, in order to receive the conditional 

expectation given by (8.7) we have to assume that U is a normally distributed variable, with mean zero, 
and variance equal 2

Uσ . When that is the case, it is possible to show that [ ] 2/2
UeeE U σ= . 

B1 would have represented the relative change in Y from a unit change in D if D had been continuous. 
Since D is not continuous, we have to calculate the relative change in Y using the conditional expectation 
given by (8.7) instead. Doing that we receive:

Relative change:

[ ] [ ]
[ ]

( ) ( )
( ) 1

,0|
,0|,1|

1
2

20

2
20

2
210

2/

2/2/
−=

−
=

=
=−=

++

+++++
B

XBB

XBBXBBB
e

e

ee
XDYE

XDYEXDYE
U

UU

σ

σσ
� (8.8)

Hence, in order to find the relative change in the conditional expectation of Y, we simply use the estimated 
value of B1 and apply the formula given above. In order to find the corresponding standard error of the 
relative change we apply a linear approximation to the non-linear expression. If we do that we end up 
with the following formula:

The variance of the relative change:	 ( ) ( ) ( )22 1
1

11 1 b
b

bb eeVeV ×==− σ � (8.9)
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Example 8.2

Assume the following regression results, from a model given by (8.6), with Y being the hourly wage 
rate, D a dummy for men, and X a variable for years of schooling. The dependent variable is expressed 
in Swedish kronor (SEK). Standard errors are given within parenthesis:

Since we are interested in the marginal effect of D on Y, we have to calculate it using the regression 
results. By (8.8) and (8.9) we receive:

Relative change: 	

Standard error:	

The t-value for the marginal effect equals 8.2, and is well above the critical value of any conventional 
level of significance. This implies a positive and significant relative change of 19.7 percent. That is, men 
earns on average 19.7 percent more per hour than women, controlling for education. 

Observe that the estimated value is very close to the calculated relative change given by (8.8). It turns out 
that when the estimated coefficient is lower than 0.3 in absolute terms, the coefficient it self is a very good 
approximation to the exact value given by (8.8), and is therefore often used directly as such. 	

Observe that

	 111 beb ≈−  when 3.0|| 1 <b

therefore researcher often use b1 directly instead of the calculated value given by (8.8).

8.2	 Slope dummy variables

As could be seen in the previous section, the dummy variable could work as an intercept shifter. Sometimes 
it is reasonable to believe that the shift should take place in the slope coefficient instead of the intercept. 
If we go back to the human capital model it is possible to argue that the difference in wage rate between 
men and women could be due to differences in their return to education. This would mean that men 
and women have slope coefficients that are different in size.

A model that control for differences in the slope coefficient for different categories of the qualitative 
variable could be expressed in the following way:

� (8.10)
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In this case the slope coefficient for X equals B1 when D=0 and B1+B2 when D=1. Hence, a way to test 
if the return to education differs between men and women would be to test if B2 is different from zero, 
which should be tested before going on to test if B1+B2 is different from zero. Observe that the coefficient 
for the cross product is interpreted differently if both variables had been continuous. Since D is binary, 
DX is only active when D=1, and the corresponding effect is therefore related to the category specified 
by D=1. 

Example 8.3

Use the same data set as in Example 8.2 and estimate the coefficients in (8.10). The results are presented 
below with standard errors within parenthesis:

� (8.11)

Use the regression results to investigate if there is a difference in the return to education between men 
and women. To answer that question we simply test the estimated coefficient for the cross product. 
Doing that, we receive a t-value of 10.3 which is above any critical values of conventional significance 
level. Hence, if this specification is correct, we can conclude that the returns to education differ between 
men and women. 

8.2.1	 A model will intercept and slope dummy variable

Whenever working with cross products it is very important to always include the involved variables 
separately to separate that kind of effect from the cross product. If it is the case that D in itself has a 
positive effect on the dependent variable, that unique effect will be part of the cross effect otherwise. 
Hence whenever including a cross product the model should be specified in the following way:

� (8.12)

When we include the two variables, X and D separately and together with their product we allow for 
changes in both the intercept and the slope. If it turns out that the coefficient of B2 is not significant one 
can go on and reduce the specification to (8.10), but not otherwise. 

Example 8.4

Extend the specification of (8.10) by including D separately. That is, estimate the parameters of the model 
given by (8.12) and interpret the results. Doing that, we received the following results, with standard 
errors within parenthesis.

� (8.12)
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By investigating the t-values we see that b1 and b2 are statistically significant from zero. But the t-value 
from the cross product is not significant any more. Since D alone has a significant effect on the dependent 
variable, there is little effect left from the cross product, and hence we conclude that there is no difference 
in the return to education between men and women. 

Example 8.3 and 8.4 should convince you that it is very important to include the variables that appear in 
a cross product separately, since they might stand for the main effect. In Example 8.3 we did not include 
D even though it was relevant. In chapter 7 we learned that omitting relevant variables has consequences 
and bias the remaining coefficients. In this case it made us to draw the wrong conclusion about the return 
to education for men and women. 

8.3	 Qualitative variables with several categories

The human capital model described above includes a continuous variable for the number of years of 
schooling. When including a continuous variable for schooling it is under the belief that the hourly 
wages are set and determined based on this measure. An alternative approach would be to argue that it 
is the level of schooling, the received diploma that matters in the determination of the wage rate. That 
calls for a qualitative variable with more than two categories. For instance:








=

schoolingsecondary Post 2
schoolingSecondary 1

schoolingPrimary 0
D � (8.13)
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In order to include D directly into a regression model we have to make sure that the effect of going from 
primary schooling to secondary schooling on the hourly wage rate is of the same size as going from 
secondary schooling to a post secondary schooling. If that is not the case we have to allow for differences 
in these two effects. There are at least two approaches to this problem.

The first and most basic approach is to create three binary variables; one for each educational level, in 
the following way:





=
otherwise0

schoolingPrimary 1
1D





=
otherwise0

schoolingSecondary 1
2D





=
otherwise0

schoolingsecondary Post 1
3D

We can now treat D1, D2 and D3 as three explanatory variables, and include them in the regression model. 
However, it is important to avoid the so called dummy variable trap. The dummy variable trap appears 
when the analyst tries to specify and estimate the following model:

� (8.14)

It is a mathematical impossibility to estimate the parameters in (8.14) since there is no variation in the 
sum of the three dummy variables, since D1+D2+D3=1 for all observations in the data set. Since the model 
only can contain one constant, in this case the intercept, we can not include all three dummy variables. 
The easiest way to solve this is to exclude one of them and treat the excluded category as a reference 
category. We re-specify the model in following way:

� (8.15)

That is, if D1 is excluded, the other categories will have D1 as reference. B2 will therefore be interpreted 
as the wage effect of going from a primary schooling diploma to a secondary schooling diploma, and B3 
will represent the wage effect of going from a primary schooling diploma to a post secondary schooling 
diploma. In order to determine the relative effects you may use the transformation described by (8.8). 

An alternative to exclude one of the categories is to exclude the constant term, which would give us a 
model that looks like this:

� (8.16)

The three dummy variables will then work as three intercepts in this model; one for each educational 
level. The coefficients can therefore not be interpreted as relative changes in this case. 
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Example 8.5

Estimate the parameters of (8.15) and (8.16) and compare and interpret the results. 

Specification I: (8.15)	 � (8.17)

Specification II: (8.16) 	 � (8.18)

The three dummy variables represent three educational levels, and X represents the age of the individual. 
The first thing to notice is that B0=C1, B0+B2=C2 and B0+B3=C3. Hence, the two specifications are very 
much related. Furthermore C2-C1=B2 and C3-C1=B3. With help from specification II, we can derive the 
effect of going from a high school diploma to a college diploma by taking the difference between C3 and 
C2 which turns out to be equal to 0.14, i.e. a 14 percent increase. However, that effect could also have 
been received by taking the difference between B3 and B2. For the obvious reason there should be no 
change in the effect of the other variables included in the model (B4 in this example) when alternating 
between specification I and II. 

8.4	 Piecewise linear regression

Dummy variables are also useful when modeling a non linear relationship that can be approximated by 
several linear relationships, known as piecewise linear relationships. In Figure 8.1 we see an example 
of a piecewise liner relationship. A typical example of such a relationship would be related to the income 
tax, which often is progressive, that is, the more you earn the larger share of your income should be 
paid in tax. 

Let say that we are interested in describing how the income tax paid (Y) is related to the gross household 
income (X) and we specify the following model:

� (8.19)

In order to transform (8.19) into a piecewise linear regression we need to define two dummy variables 
that will describe on what linear section the household is located. We define:



 ≤≤

=
otherwise0

 interval in the is income Gross1 21
1

XXX
D





=
otherwise0

an greater th is income Gross1 2
2

X
D
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Figure 8.1 Piecewise linear regression

Next re-specify the intercept and the slope coefficient in (8.19) in the following way:

22110 DADAAA ++= � (8.20)

22110 DBDBBB ++= � (8.21)
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Substitute (8.20) and (8.21) into (8.19) and receive:

UXDBDBBDADAAY ++++++= )()( 2211022110

After multiply out the parenthesis we receive the following specification that could be used  
in estimation:

UXDBXDBXBDADAAY ++++++= )()( 2211022110 � (8.22)

The estimated relations in the three income ranges are therefore given by:

When 1XX < 		  XbaY 00
ˆ +=

When 21 XXX ≤≤ 		  XbbaaY )()(ˆ
1010 +++=

When 2XX > 		  XbbaaY )()(ˆ
2020 +++=

8.5	 Test for structural differences

An important application using dummy variables is to test if the coefficients of the model differ for 
different sub groups of the population, or if they have changed over time. For instance, assume that we 
have the following wage equation expressed with a semi logarithmic (log-linear) functional form:

� (8.23)

with Y being the wage rate, X1 the number of years of schooling, and X2 the number of years of working 
experience. We would like to know if B1 and B2 differ between men (m) and women (w) simultaneously. 
That is, we would like test the following hypothesis:

wmwm BBBBH 22110 ,: ==

In order to carry out this test using dummy variables we need to create an indicator variable D, let’s say 
for men, and then form the following regression model:

� (8.24)
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Equation (8.24) will be representing the unrestricted model, where men and women are allowed to have 
different coefficients, and equation (8.23) will be representing the restricted case where men and women 
have the same coefficients. We will now compare the residual sums of squares (RSS) between the two 
models and use those in our test statistic given by:

� (8.25)

If the RSSR is very different from RSSU we will reject the null hypothesis in favor of the alternative 
hypothesis. If they are similar in size, the test value will be very small and we say that the coefficients 
are the same for men and women. 

Example 8.6

Assume that would like to know if the coefficients of equation (8.23) differ between men and women in 
the population. In order to test the joint hypothesis we need to run two regression models; one restricted 
model given by (8.23) and one unrestricted model given by (8.24). Using a sample of 1483 randomly 
selected individuals we received the following results:

Restricted Model Unrestricted Model

Residual Sum of Squares (RSS) 145.603 140.265

Degrees of freedom (n-k) 1483 – 3 = 1480 1483 – 6 = 1477

Using the results given in Table 8.1 we may calculate the test value using (8.25). The degrees of freedom for 
the numerator is calculated as the difference between degrees of freedom for the RSS from the restricted 
and unrestricted model. That is 1480 – 1477 = 3. Another way to think about the degrees of freedom for 
the numerator is to express it in terms of the number of restrictions imposed by the restricted model 
compared to the unrestricted. The unrestricted model has 6 parameters, while the restricted model has 
only 3, which means that three parameters have been set to zero in the restricted model. Therefore we 
have 3 restrictions. 

The test value using the test statistic is therefore equal to:

The test value has to be compared with a critical value. Using a significance level of 5 percent the critical 
value equals 2.6. Hence, the test value is much larger than the critical value which means that we can 
reject the null hypothesis. We can therefore conclude that the coefficient of the regression model differ 
for men and women. 
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9	� Heteroskedasticity and 
diagnostics

The classical assumption required for the OLS estimator to be efficient states that the variance of the error 
term has to be constant and the same for all observations. This is referred to as a homoskedastic error 
term. When that assumption is violated and the variance is different for different observations we refer 
to this as heteroskedasticity. This chapter will discuss the consequences of violating the homoskedasticity 
assumption, how to detect any deviations from the assumption and how to solve the problem when present. 

9.1	 Consequences of using OLS

The classical assumptions made on the error terms are that they are uncorrelated, with mean zero and 
constant variance 2

Uσ . In technical terms this means that

[ ] 0=iUE � (9.1)

[ ] 2
UiUV σ= � (9.2)

[ ] 0, =ji UUCov jiji ≠∀ ,, � (9.3)
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Assumption (9.1) is in use to make the OLS estimators unbiased and consistent. Assumptions (9.2) and 
(9.3) are important for the OLS estimator to be efficient. Hence, if (9.2) is ignored and the residual variance 
is heteroskedastic we can no longer claim that our estimator is the best estimator among linear unbiased 
estimators. This means that it is possible to find another linear unbiased estimator that is more efficient. 

Heteroskedasticity implies that

The OLS estimators of the population parameters are still unbiased and consistent.

The usual standard errors of the estimated parameters are biased and inconsistent. 

It is important to understand that the violation of (9.2) makes the standard errors of the OLS estimators 
and the covariances among them biased and inconsistent. Therefore tests of hypothesis are no longer 
valid, since the standard errors are wrong. To see this, consider the variance of the estimator for the 
slope coefficient of the simple regression model:

� (9.4)

The expression given by (9.4) represents the correct variance that should be used. Unfortunately it 
involves the unknown population variance of the error term which is different for different observations. 

Since the error term is heteroskedastic, each observation will have a different error variance. The 
expression will therefore deviate from the variance estimated under homoskedasticity, that is:

( )
( )

( ) ( )
[ ]2

1

2

2

2

1

2

1

22

1 1bn

i
i
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i
i
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i
ii

SE
XXXX

XX
bV =

−

≠






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


−

−

=

∑∑

∑

==

= σ
σ

� (9.5)

As can be seen in (9.5) the variance of the OLS estimator is different from the expected value of the 
sample variance of the estimator that works under the assumption of a constant variance. 

An important use of the regression equation is that of making predictions and forecasts of the future. 
Since the OLS estimators are unbiased and consistent, so will the forecasts. However, since the estimators 
are inefficient, the uncertainty of the forecasts will increase, and the confidence interval of the forecast 
will be biased and inconsistent. 
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9.2	 Detecting heteroskedasticity

Since we know that heteroskedasticity invalidate test results it is very important to investigate whether 
our empirical model is homoskedastic. Fortunately there are a number of test, graphical as well as 
statistical that one can apply in order to receive an answer to the question. Below the most commonly 
used test will be discussed. 

9.2.1	 Graphical methods

A natural starting point in detecting possible deviations from homoskedasticity is to plot the data. Since 
we are interested in the behavior of the error term and its variation, two obvious scatter plots are given 
in Figure 9.1 that comes from a simple linear regression model. In Figure 9.1a the dependent variable 
is plotted against its explanatory variable X. Here we can see a clear pattern of heteroskedastidity which 
is driven by the explanatory variable. That is, the larger the value of X, the larger is the variance of the 
error term. 

Figure 9.1 Scatter plots to detect heteroskedasticity

As an alternative to Figure 9.1a we can also plot the estimated residuals directly against X, as is done 
in Figure 9.1b. In the simple regression case with just one explanatory variable these two graphs are 
always very similar. However, when using a multiple regression models the picture might be different, 
since the residual is a linear combination of all variables included in the model. Since it is the partial 
effect of X on the residual that is of primary interest, it is advised that the residual should be plotted 
against all involved variables separately. If it is possible to find a systematic pattern that give indications 
of differences of the variances over the observations, one should be concerned. Graphical methods are 
useful, but sometimes it is difficult to say if heteroskedasticy is present and found harmful. It is therefore 
necessary to use statistical test. The graphical method is therefore merely a first step in the analysis that 
can give a good picture of the nature of the heteroscedasticity we might have, which will be helpful later 
on when correcting for it. 

Download free eBooks at bookboon.com



Econometrics

103 

�Heteroskedasticity and diagnostic 

Example 9.1 

We are interested in the rate of the return to education and estimate the coefficients of the following 
human capital model:

� (9.6)

We use a sample of 1483 individuals with information on hourly wages in logarithmic form (lnY), years 
of schooling (ED), and years of work experience (year). Both explanatory variables are also squared to 
control for any non linear relation between the dependent variable and the two explanatory variables. 
Using OLS we received the following results with t-values within parenthesis:

� (9.7)

 should be interpreted as the predicted value of lnY. We observe that all coefficients are significantly 
different from zero. The squared terms have very small coefficients, even though their t-values are 
sufficiently large to make them significant. Observe that the coefficient for the square of year is different 
from zero. Since the value is very small and we only report the first three decimals it appears to be zero. 
Its t-value shows that the standard error is even smaller. 
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We suspect that our residual might be heteroskedastic and we would like to investigate this by looking 
at a graph between the residual and the two explanatory variables. Sometimes, to enlarge the possible 
differences in variance among the residuals it is useful to square the estimated residual. If we do that we 
receive the graphs given in Figure 9.2.

Figure 9.2 Graphical analysis of error variance

In Figure 9.2a we see the squared error term against the number of years of schooling, and a pattern 
can be identified. The error variance seems to be larger for lower years of schooling than for more 
years of schooling. This is of course just an indication that we need to investigate further using formal 
statistical test. 

In Figure 9.1b the picture is less obvious. If ignoring the top outlier that makes it look likes the variance 
is higher around 35 year of work experience, it is difficult to say if there is some heteroskedasticity to 
worry about. Since it is an unclear case, we still need to investigate the issue further, holding in mind 
that hypothesis testing is meaningless if the standard errors of the parameter estimates are wrong. Below 
we will go through the basic steps of the three most popular tests discussed in the textbook literature. 

9.2.2	 Statistical tests

The three most common statistical test procedures to identify a problem of heteroskedasticity are the 
Goldfeld-Quant test, the Breusch-Pagan test, and the White’s test. Below we will shortly describe the 
logic of the tests and how they are implemented. 
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The Goldfeld-Quant test (GQ) works under the assumption that the error variance is equal for all 
observations, which is to say that the error term is homoskedastic. When this is true, the variance of one 
part of the sample must be the same as the variance of another part of the sample independent on how 
the sample is sorted. If this is not the case we must conclude that the data at hand is heteroskedastic. 
The following basic steps complete the GQ-test:

Sort the sample according to a variable that you believe drives the size of the variance. If the variable 
X1 is related to the size of the variance, sort the data set in an increasing order of X1, and divide the 
sample into three groups of equal size and omit the middle group. If the sample size is very small (i.e. 
each group is less than 100 observations), it is enough to divide the sample into two groups without 
omitting any observations. 

Run the model for each subsample and calculate the Residual Sum of Squares (RSS) for each group:
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Form the hypothesis that is to be tested:
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Use the two Residual Sum of Squares to calculate the variance of the two subsamples and form the  
test function:
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As a rule of thumb, one should always put the larger variance in the numerator. Choose a significance 
level and find the critical value to compare the test value with. If the test value is larger than the critical 
value you choose to reject the null hypothesis. 

Example 9.2

We are going to investigate model (9.6) used in Example 9.1 to see if we can identify any heteroskedasticity 
using the GQ-test. In the graphical analysis we found an indication of heteroskedastisity related to the 
number of years of schooling. Therefore, we sort the data set in an increasing order of years of schooling 
and delete the 33 percent in the middle. We use the two remaining sub-samples and estimate a regression 
for each sample. Using the results from these regressions we calculate the corresponding variance for 
each regression: 

� (9.11)
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Using the estimated variances for the two subsamples we can calculate the test value:

3717.1
0892133.0
1223756.0

2
2

2
1 ===

S
SF � (9.12)

Choosing a significance level of 5 percent we found a critical value equal to 1.16. Most statistical tables 
do not offer information on critical values for the degrees of freedom we have in this example. To 
approximate the critical value by using the numbers valid for infinity in both numerator and denominator 
would not be meaningful. Therefore we have been using Excel to calculate the critical value valid for 
the degrees of freedom in our case.

Since our test value is larger than the critical value we conclude that our model suffers from 
heteroskedasticity and that year of schooling is at least partly responsible. A general problem with this 
test is that it tends to reject the null hypothesis very often. That is, it is very sensitive to very small 
differences, especially when the degrees of freedom are in level with those that we have in this example, 
since that produce very small critical values. 

In a second step you should also test the second variable, years of work experience, that could be part 
of the problem as well. However, we will not go through that here, and leaves that to the reader. 
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The Breusch-Pagan test (BP) is also a popular test procedure presented in most econometric text books. 
The BP-test is slightly more general than the GQ-test, since it allows for more than one variable at the 
time to be tested. The starting point is a set of explanatory variables that we believe drives the size of the 
variance of the error term. We will call them X1, X2, …, Xh, and we claim that the following specification 
could be a plausible specification for our error variance:

[ ] ( )hhii XAXAXAAfUE ++++== ...22110
222 σσ � (9.13)

The variables included in (9.13) could be just a subset of the explanatory variables of the model or it 
could be all of them. In Example 9.1 we could not be conclusive about whether just one or if both of 
our variables were driving the size of the variance. In a case like that it is advisable to included both 
the variables in the specification of the variance given by (9.13). The functional form is not expressed 
explicitly in (9.13) as stated, but we are going to use a linear specification, just as for the model we use. 

The hypothesis of this test is:	
hjjAH

AAAH

j

h

1,2,..., , oneleat at for 0:
0...:

1

210

=≠
====

� (9.14)

In order to test the hypothesis we have to go through the following basic steps:

1)	 Run the regression for the model you believe suffers from heteroskedasticity using OLS.
2.	 Save the residuals and square them ( 2

ie ). Use the squared residual and run the following 
auxiliary regression:

	 ε+++++= hh XAXAXAAe ...22110
2 � (9.15)

Equation (9.15) is a representation of (9.13) with a linear specification. 

Even though it looks like we could use the classical approach of using an F-test to test the joint hypothesis, 
it turns out not to be possible since the dependent variable is a construction based on another model. 
Instead the following test statistic could be used to test the null hypothesis:

	 � (9.16)

where n is the number of observations used in the regression of (9.15) and 2
eR is the coefficient 

of determination received from (9.15). It turns out that the product of those two terms is Chi-
squared distributed with h degrees of freedom, where h is the number of restrictions, which 
in this case corresponds to the number of variables included in (9.15). The test value should 
therefore be compared with a critical value received from the Chi-square table for a suitable 
level of significance. 
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Example 9.3

In this example we will use the same data set and the same model as in Example 9.2. But this time the 
test will involve both the variables included in the model. We choose not to include the squared terms, 
even though they in principle could be included. Following the basic procedure of the BP-test we specify 
and estimate the variance function with standard errors given within parenthesis:

Using this information we are able to calculate the test value:

Choosing a significance at the 5 percent level, the Chi-square table with 2 degrees of freedom shows a 
critical value of 5.99. Hence, the test value is smaller than the critical value and we are unable to reject 
the null hypothesis. This means that we have received a conflicting result compared with the GQ-test 
result. Since the GQ-test is very sensitive to small differences, we believe that the result of this test is 
more useful. However, the BP-test is a test that requires large data sets to be valid, and is sensitive to 
any violation of the normality assumption. Since we have more than 1000 observations we believe that 
our sample is sufficiently large, but in order to be sure we will move on with yet another common test 
called the White’s test.

White’s test is very similar to the BP-test but does not assume any prior knowledge of the heteroskedasticity, 
but instead examines whether the error variance is affected by any of the regressors, their squares or cross 
products. Therefore, it is also a large sample test but it does not depend on any normality assumption. 
Hence, this third test is more robust than the other two test procedure described above, and is sometimes 
also called the White’s General Heteroskedasticity test (WGH). The basic steps in the procedure are as 
follows for a model with two explanatory variables, where (9.17) represents the main model and (9.18) the 
variance function that contains all the variables of the main function and their squares and cross products:

UXBXBBY +++= 22110 � (9.17)

UXXAXAXAXAXAA ++++++= 215
2
24

2
1322110

2σ � (9.18)

Estimate the parameters of equation (9.17) and create and save the residual. 
Square the residual and run the auxiliary regression model given by (9.18). 
Using the results from the auxiliary regression you can calculate the test value using (9.16). If the test 
value is larger than the critical value chosen, you reject the null hypothesis of homoskedasticity. 
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Example 9.4

We repeat the test executed in Example 9.3 and apply the WGH-test instead. Observe that the only 
difference is in the specification of the variance function. Following the basic steps given above we 
received the following results with standard errors reported within parenthesis:

Observe that the coefficients and their standard errors are different from zero even though some of them 
appear to be zero since they are expressed with just three decimal points. Their t-values are definitely 
different from zero. 

Using these results we can calculate the test value:
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The critical value from the Chi-square table, with 5 degrees of freedom and a significance level of 5 
percent, equals 11.07, which is larger than the test value. Hence this test confirms the conclusions from 
the previous test and we are unable to reject the null hypothesis of homoscedasticity. That is, we have 
no statistical material that points in the direction of heteroskedasticity. 

9.3	 Remedial measures 

In the previous discussion we concluded that our error term was homoskedastic, or that the trace of any 
heteroskedasticity was not to worry about. However, if we have followed the suggestion by the graphical 
inspection and the GQ-test we would have believed that the heteroskedasticity could have been driven by 
one of the explanatory variables, which is one example of how heteroskedasticty could look like. It could 
also be the case that our model contains two different subgroups with different variances, so that there 
are two different variances to deal with. There is of course a number of different ways heteroskedasticty 
could be expressed. Below we will look at some examples were we correct for heteroskedasticity under 
the assumption of a specific form of heteroskedasticity. 

When the nature of the heteroskedasticity is known, one can use Generalized Least Squares (GLS) to 
estimate the unknown population parameters. Below we will look at three different cases on how to 
transform the model so that GLS could be applied. 

To run a regression using GLS instead of OLS is in practical terms the same thing, but we call it GLS when 
we have transformed the variables in the model so that the error term become homoskedastic. Below we 
will go through three cases under the assumption of using the following population regression model:

UXBXBBY +++= 22110 � (9.19)

Case 1: 	 ii X1
22 σσ =

The first thing to note is that we still assume that the expected value of the error term equals zero, 
which means that the variance of the error term may be expressed as [ ] ii XUE 1

22 σ= . The objective 
with the transformation of the variables is to make this expectation equal to 2σ  and nothing more. If 
we accomplish this with just some transformations of the involved variables we are home free. Let us 
see how we can do that in this particular case.

We know that the variance of the error term is [ ] ii XUV 1
2σ= . Hence, if we divided everything in the 

model with the square root of the variable that the variance is proportional to, we would end up with a 
homoskedastic error term. To see this:
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In practice this is carried out by just transforming Y, X1, and X2 and creating a new constant equal 

to 
iX1

1 , instead of 1 that use to be there next to B0. Hence when running this specification in a 

computer you have to ask the software to run the regression through the origin, since we now have a 

model specific constant that moves with X1. All computer software has that option, and once you have 

found how to do that, you just regress 
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. When you transform the 

variables in this way, you automatically transform the error term, which now is divided by the square 

root of X1. Once that is done, we have a homoskedastic error term. That is
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Observe that nothing happens with the parameter estimates. The only thing that happens is that the 
error term is transformed into a constant which will correct the standard errors for the parameters. 

Case 2:		 2
1

22
ii Xσσ =

This case is very similar to the previous case with the exception that the variable X1 is squared, which 
means that the variance increases exponentially with X1. The argumentation is similar to the one we had 
above, and the objective is to receive a constant error term. Hence instead of dividing by the square root 
of X1 we simply divide by X1 it self. If we do that we receive:
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Case 3: Two different variances

In this case we have an error term that has two different variances dependent on the observation. Hence, 
our sample could include two groups with intrinsic differences in their variation. If these two groups are 
known, we can sort the data set with respect to these groups. For the first n1 observations, which contains 
the first group, the error term has the variance 2

1σ  and for the remaining n2 observations, corresponding 
to the second group, the error term has the variance 2

2σ . In order to solve the heteroskedasticity problem 
here, we need to estimate the two variances, by splitting the sample in two parts and estimate the regression 
variance separately for the two groups. Once that is done we proceed and transform as follows:

Step 1: Split the data set into two parts and estimate the model separately for the two sets of data:

2
122110 )var(, σ=+++= iiiii UUXBXBBY 	 i=1, …n1

2
222110 )var(, σ=+++= iiiii UUXBXBBY 	 i=n1+1, …,n
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Step 2: Transform each section of the data set with the relevant standard deviation, and run the regression 
on the full sample of n observations using the transformed variables:
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By scaling the error term for each group using their standard deviation, the new transformed error term 
will have a variance that equals 1 in both subsamples. When merging the samples the total variance for 
the full model using all observations together will then be constant and equal to 1. To see this
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Example 9.5

Assume that we would like estimate the parameters of the following model 

UXBXBBY +++= 22110

and we know that the nature of the error variance is proportional to X1 in the following way:

ii X1
22 σσ =
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We would like to estimate the model using OLS and GLS and compare the results. Since we know how 
the structure of the heteroskedasticity, we apply GLS according to case 1. 

Ordinary Least Squares Generalized Least Squares

Coefficient Standard error Coefficient Standard error

Constant 1.005 0.059 0.996 0.013

X1 0.425 0.038 0.475 0.025

X2 1.578 0.075 1.497 0.031

R2 0.210 0.955

MSE 0.956 0.991

Table 9.1 OLS and GLS estimates using 2000 observations

In Figure 9.3 we compare the residual plots before and after correcting for heteroskedasticity to see if 
the problem is fully solved. From Figure 9.3b the picture looks satisfying. 

Figure 9.3 Estimated residual plots before and after correction for heteroscedasticity
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Table 9.1 show the results from OLS and GLS applied to a heteroskedastic model. As can be seen the 
estimated coefficient does not deviate that much which is what we expected since heteroskedasticity 
has no effect on the unbiasedness and consistency of the OLS estimator. When comparing the standard 
errors of the two estimations, large differences appear. The standard errors of the OLS estimated slope 
coefficients are twice as large as those for the corrected model. However the conclusions from the two 
estimations are the same. That is due to the relatively large sample that was used. If the sample would 
have been smaller, the corresponding t-values could have been much smaller and the chance of drawing 
the wrong conclusion would be greater. However, these results are sample specific. When the error term 
is heteroskedastic the standard errors are wrong and could be smaller or larger than the correct ones. 
So it is impossible to say something in advance without knowing something about the exact nature of 
the heteroskedasticity.

Another important observation is related to the coefficient of determination. As can be seen it increased 
substantially. However, that does not mean that the fit of the model increased that much. Unfortunately 
it just means that after a transformation of the variables of the kind we did here, the coefficient of 
determination is of no use, since it is simply wrong. 

9.3.1	 Heteroskedasticity-robust standard errors

The approach of treating heteroskedasticity that has been described until now is what you usually find 
in basic text books in econometrics. But this approach is old fashion and researchers today tend to use 
a more convienient approach that is based on using an estimator for the standard errors that is robust 
to heteroskedasticity rather than doing all these investigations and then correct for it assuming a specific 
structure of the variance. 

We know how the variance of the OLS estimator should look like for the simple linear regression model:
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Halbert White is an econometrician that showed that the unknown population variance could be replaced 
by the corresponding squared least square residual 2

ie . By doing that one would receive consistent 
estimates of the true standard errors which provide a basis for inference in large samples. Hence, a 
heteroskedasticiy-consistent variance estimator could be estimated using the following formula:
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Since (9.24) is a large sample estimator it is only valid asymptotically, and test based on them are not 
exact and when using small samples the precision of the estimator may be poor. Fortunately there 
exist a small sample adjustment factor that could improve the precision considerably by multiplying 
the variance estimator given by n/(n-k). Furthermore and more importantly it is possible to generalize 
this formula to the multiple regression case, even thought it become slightly more complicated. 
Fortunately most econometric software such as STATA and SAS, includes the option of receiving 
robust standard errors together with the parameter estimates when running the regression. Hence in  
the practical work of your own you should always use the robust standard errors when running 
regression models. 

Example 9.6

In this example we are going to use a random sample of 1483 individuals and estimate the population 
parameters of the following regression function:
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where Y represents the log hourly wages, ED the number of years of schooling, Male a dummy variable 
that indicates if the sample person is a man, and year that represents the number of years of work 
experience. We are not sure whether we have a problem of heteroskedasticity and we therefore estimate 
the parameters with and without robust standard errors, to see how the estimates of the standard errors 
change. We received the following results:

Variables

OLS Robust Estimation I Robust Estimation II

P.E. S.E. P.E. R.S.E. P.E. R.S.E.

Inctercept 3.646 0.087 3.646 0.105 3.815 0.041

Years of Education 0.063 0.012 0.063 0.016 0.037 0.003

Years of Education 2 -0.001 0.0004 -0.001 0.0006 - -

Male (dummy) 0.123 0.017 0.123 0.017 0.124 0.0167

Years of Work exp. 0.008 0.001 0.008 0.001 0.008 0.001

RMSE 0.3079 0.3079 0.3083

Table 9.2 Regression results

Note: P.E. stands for Parameter Estimates; S.E. stands for Standard Errors; R.S.E. stands for Robust Standard Errors. RMSE stands for Root 
Mean Square Error which is the standard deviation of the estimated residual. 

Table 9.2 contains three regressions and the first column shows the results from the standard OLS 
regression assuming homoskedasticity. These results should be compared with the second column 
of estimates that use robust standard errors, which are heteroskedasticity consistent standard errors. 
Comparing those with the OLS case, we see that the robust standard errors are some what larger, which 
had consequences on the significance of the parameter for the squared education term, which no longer 
is significant. Including irrelevant variables in the regression makes the estimates less efficient. It therefore 
makes no sense to have the squared term included. In the third column, we re-estimate the model with 
out the squared term using robust standard errors. 

Since we decided to use robust standard errors we could end up with a more parsimonious model, 
including only relevant terms. If we had included the squared education term, the marginal effects of 
education on earnings would be different and wrong. As can be seen from the RMSE measure that 
represents the estimated standard deviation of the error term it does not change very much among the 
specifications in Table 9.2. We should therefore conclude that the earnings model is not very sensitive 
to heteroskedasticity using this specification. 
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10	 Autocorrelation and diagnostics
Autocorrelation or serial correlation often appears when working with time series data. One should 
understand that in order for autocorrelation to appear it is necessary that observations are correlated 
over a sequential order. In statistical terms this could be expressed as:

[ ] jiUUCov ji ≠∀≠ 0, � (10.1)

Hence, autocorrelation is a problem that frequently appears when working with data that has a time 
dimension. This means that it is meaningless to look for autocorrelation when working with cross 
sectional data which usually are based on random samples from a population, at a given point in 
time. This should be obvious since cross sectional data has no natural ordering that could generate a 
correlation. If correlation is found anyway, one can be sure that it is a fluke and has nothing to do with 
any underlying process. 

As an example, we could think of a random sample of individuals taken from a population to analyze 
their earnings. To find a correlation between two randomly chosen individuals in this sample is not very 
likely. However if we follow the same individual over time, the correlation between par wise observations 
will be a fact, since it is the earnings of the same individual, and observed earnings for a given individual 
does not change very much between short time intervals. 

This chapter will discuss the most important issues related to autocorrelation that an applied researcher 
need to be aware of, such as its effect on the estimated parameters when ignored, how to detect it and 
how to solve the problem when present. 

10.1	 Definition and the nature of autocorrelation

An autocorrelated error term can take a range of different specifications to manifest a correlation 
between pair wise observations. The most basic form of autocorrelation is referred to as the first order 
autocorrelation and is specified in the following way:

ttt VUU += −1ρ � (10.2)

where U refer to the error term of the population regression function. As can be seen from (10.2) the 
error term at period t is a function of it self in the previous time period t-1 times the coefficient,  which 
is referred to as the first order autocorrelation coefficient (This is the Greek letter rho, pronounced 
“row”). The last term V, is a so called a white noise error term, and suppose to be completely random. 
It is often assume to be standard normal. 
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This type of autocorrelation is called autoregression because the error term is a function of its past 
values. Since U is a function of it self one period back only, as appose to several periods, we call it the 
first order autoregression error scheme, which is denoted AR(1). This specification can be generalized 
to capture up to n terms. We would then refer to it as the nth order of autocorrelation and it would be 
specified like this:

tt
n

ttt VUUUU +++= −−− 12
2

1 ...ρρρ � (10.3)

The first order autocorrelation is maybe the most common type of autocorrelations and is for that 
reason the main target of our discussion. The autocorrelation can be positive or negative, and is related 
to the sign of the autocorrelation coefficient in (10.2). One way to find out whether the model suffer 
from autocorrelation and whether it is positive or negative is to plot the residual term against its own 
lagged value. 

Figure 10.1 Scatter plots between et and et-1

Figure 10.1 present two plots that are two examples of how the plots could look like when the error term 
is autocorrelated. The graph to the left represents the case of a positive autocorrelation with a coefficient 
equal to 0.3. A regression line is also fitted to the dots in order to make it easier to see in what direction 
the correlation drives. Sometimes you are exposed to plots where the dependent variable or the residual 
term is followed over time. However, when the correlation is below 0.5 in absolute terms, it might be 
difficult to identify any pattern using those plots, and therefore the plots above are preferable. 

10.2	 Consequences

The consequences of having an autocorrelated error term are very similar to those that appear with a 
heteroskedastic error term. In short we have that:

1.	 The estimated slope coefficients are unbiased and consistent.
2.	 With positive autocorrelation the standard errors are biased and too small.
3.	 With negative autocorrelation the standard errors are biased and too large.
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Since the expected value of the residual is zero, despite any autocorrelation, the estimated slope coefficients 
are still unbiased. That is, the property of unbiasedness and consistency does not require uncorrelated 
error terms. Confirm this by reading chapter 3 where we derived the sample estimators and discussed 
their properties. 

The efficiency property of the OLS estimator does, however, depend on the assumption of no 
autocorrelation. To see this, it is useful to repeat how the variance of the slope estimator looks like in 
the simple regression case. Assume the following set up:

ttt UXBBY ++= 10 � (10.4)

ttt VUU += −1ρ � (10.5)

)1,0(~ NVt � (10.6)

( ) 0=tUE  and 2)( σ=tUV � (10.7)
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With this setup we observe that the residual term, U, is autoregressive of order one. The covariance is 
therefore given by:

� (10.8)

When generalizing this expression to an arbitrary distance between two error terms it is possible to 
show that it equals

( ) 2, σρ j
jtt UUCov =− � (10.9)

With this set up, together with the knowledge from chapter 3 on how the variance of the OLS estimator 
looks like, we can examine the variance under the assumption of autocorrelation. The variance of the 
slope coefficient can be expressed in the following way
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If the autocorrelation coefficient were zero ( )0.. =ρei , the infinite series within the parenthesis in (10.10) 
would equal one. However, if ignoring the autocorrelation when present, we disregard this term which bias 
the variance of the slope coefficient. To receive a picture of how large in size the parenthesis is, it is useful 
to rewrite it into something more compact. In order to do that, we need to impose some assumptions on 
the behavior of X. We assume that the variance of X is constant and given by 2

Xσ , and follows a first order 
autoregressive scheme, just like the error term of the model. This implies that 2),( X

j
jtt rXXCov σ=− , 

with r being the correlation coefficient for Xt and Xt-1. If we apply these assumptions to (10.10) we receive

( ) ( )
r
r

T
rrr

T
bV

X

U

X

U
ρ
ρ

σ
σρρρ

σ
σ

−
+

=++++=
1
1...2221 2

2
3322

2

2

1 	 when ∞→j � (10.11)
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In order to receive the compact expression given by (10.11) you have to know how to deal with geometric 
series. If you do not know that, do not worry! The important thing here is to see how the sign of the 
autocorrelation coefficient and the correlation between Xt and Xt-j affect the size of the variance and 
induce a bias when ignoring autocorrelation. We know that both  and r takes values between -1 and 1, 
since they represents correlation coefficients. With this set up we can analyze the size of the adjustment 
factor due to autocorrelation. Let us investigate two basic and common cases:

1) 0>ρ  and 0>r  (Positive autocorrelation)

When this is true, the adjustment factor become: 1
1
1

>
−
+

r
r

ρ
ρ , which means that the usual estimates for 

the variance will be too small, and coefficients may appear more significant then they rely are. With 
a fixed value of r, the adjustment factor is increasing with the size of the autocorrelation coefficient, 
which increases the bias. If the value of r is zero, as it would be in cross sectional data for instance, the 
adjustment factor would be one, and the bias of the variance would be zero, independent of the size the 
autocorrelation coefficient. Most macro economic time series has an r value that is different from zero, 
and hence the case would in general not appear.

2) 0<ρ  and 0>r  (Negative autocorrelation)

With a negative autocorrelation, the adjustment factor become: 1
1
10 <
+
−

<
r
r
ρ
ρ , which means that the 

usual estimates will be too large, and appear less significant then they rely are. With a fixed value of r, 
and an increasing value of the autocorrelation coefficient in absolute terms, the adjustment factor will 
be smaller, and increase the bias. 

Hence, when we have autocorrelation amongst our residual terms, we get biased estimates of the standard 
errors of the coefficients. Furthermore, the coefficient of determination and the usual estimator for the 
error variance of the model will be bias as well. Autocorrelation is therefore a serious problem that needs 
to be addressed. 

10.3	 Detection of autocorrelation

From the previous discussion we understand that autocorrelation is bad which emphasize the importance 
of learning how to detect it. Below we will describe the most common procedures found in the text book 
literature. We will not discuss any graphical methods since they sometimes are difficult to interpret. In 
the introduction of the chapter we gave some examples on how graphical methods could be used. In 
more advanced time series analysis, graphical methods based on autocorrelation functions and partial 
autocorrelation functions are frequently used. However, we will not discuss these methods here. 
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10.3.1	 The Durbin Watson test

The Durbin Watson test (DW) is maybe the most common test for autocorrelation and is based on the 
assumption that the structure is of first order. Since first order autocorrelation is most likely to appear 
in time series data, the test is very relevant, and all statistical software has the option of calculating it 
automatically for us.

The Durbin-Watson test statistic for first order autocorrelation is given by:

� (10.12)

with e being the estimated residual from a sample regression model. To see that this test statistic is related 
to the first order autocorrelation case we may rewrite (10.12) in the following way:

� (10.13)
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where ρ̂  on the right hand side is the autocorrelation coefficient from a first order autoregression scheme. 
However, it is only an approximation since the expressions in the numerator sum from 2 to T instead 
of 1 to T as is the case in the denominator. The larger the value of T the better is the approximation. 

From (10.13) it is possible to see that the DW test statistic only takes values between 0 and 4 since the 
autocorrelation coefficient only takes values between -1 and 1. Hence when the autocorrelation coefficient 
equals 0, the DW test statistics equals 2. If DW > 2 we have an indication of a negative autocorrelation, 
and if DW < 2 we would have an indication of a positive autocorrelation. However, since the relationship 
is an approximation, the DW test value can sometimes deviate from 2 even though the autocorrelation 
coefficient is zero. So the standard question is how much it should be allowed to deviate? Could we use 
some critical values to help us interpret the estimated value of DW. 

Unfortunately there exist no simple distribution function for this test function since it depends on the 
number of observations used as well as the values of the explanatory variables used in the regression. 
For that reason it is not possible to establish a precise critical value for the DW test statistic. However, 
Durbin and Watson made some simulations so that we, based on the number of observations used, and 
the number of parameters included in the model, can find a lower value (L) and an upper value (U) to 
compare the DW test value with.

Positive AC Inconclusive No AC Inconclusive Negative AC

0 <DW< L L <DW< U U<DW<(4-U) (4-U)<DW< (4-L) (4-L) <DW< 4

Table 10.1 show five different regions where the DW-test value potentially could end up. If we receive a 
test value that is located in the interval between the lower value (L) and the upper value (U) our test is 
inconclusive and we have no use of the DW-test. However, if the DW-value is between 0 and the lower 
value (L) we can draw the conclusion of having a positive autocorrelation. In the statistical table, with 
upper and lower values for the DW-test, we will only find the values that refer to the section below 2. 
In case of a negative autocorrelation we have to form the upper and lower value our self, using L and 
U as is done in Table 10.1.

Example 10.1 

Assume that we have a time series with 150 observations, and two explanatory variables that will be used 
to explain the dependent variable. Running the regression we received a DW-test value equal to 1.63. 
In the table with critical values for the Durbin Watson test we found that L=1.71 and U=1.76. Since the 
test value is outside the inconclusive interval and below the lower value we have to draw the conclusion 
that our model suffer from positive autocorrelation. 
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Example 10.2 

We have the same set up as in the previous example but with a DW-test value equal to 2.35. In the table we 
found the value for L=1.71 and the value for U=1.76. Using these values we can calculate the inconclusive 
interval related to DW-values larger than 2. Using the information in Table 10.1 we received: (4-U) = 
(4-1.76) = 2.24 and (4-L) = (4-1.71) = 2.29. Since the test value of 2.35 is outside the interval and larger 
than the upper value of 2.29 we must conclude that our model suffer from negative autocorrelation. 

10.3.2	 The Durbins h test statistic 

As been described above, the DW-test is made for the purpose of testing for first order autocorrelation. 
Furthermore, it assumes that none of the explanatory variables are lagged dependent variables which 
would be the case when estimating a dynamic model. When that is the case the DW-test has a tendency 
to be close to 2 even though the error terms are serially correlated. Hence, the DW-test should not be 
used with the following kind of model:

tttt UXBYBBY +++= − 2110 � (10.14)

Fortunately there is an easy alternative to the DW-test that could be seen as a modified version of it and 
for that reason is called the Durbins h statistic. It is defined in the following way:

� (10.15)

where DW is the standard DW-test, T the number of observations and )( 1bVar the square of the standard 
error of the estimated parameter of the lagged dependent variable. The test statistic has been shown to 
be standard normally distributed under the null hypothesis of no autocorrelation, which means that the 
test value should be compared with a critical value from the standard normal table. 

The presence of autocorrelation in models that include lagged dependent variables is even more affected 
than the standard model. When the error term is serially correlated in a dynamic model the estimated 
parameters are biased and inconsistent. It is therefore very important to correct for the problem before 
using the estimates for anything.

Example 10.3

Assume that we have estimated the parameters of a dynamic model and received the following results 
with standard errors within parenthesis:

( ) ( ) ( )032.0043.0321.0
821.0789.0324.1ˆ

1 ttt XYY ++= − 	
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We use quarterly data over a 30 years period, which means that T=120. Since our model includes a 
lagged variable we lose one observation in the estimation. Using the information from the regression 
results, we may form the Durbins h-statistic:

( )
925.2

043.01191
119

2
529.11 2 =

×−






 −=h

Using a one sided test at the 5 percent significance level we receive a critical value of 1.645. Since the test 
value is much larger than the critical value, we must conclude that our error terms are serially correlated. 

10.3.3	 The LM-test

The LM test is a more general test of autocorrelation compared to the two previous tests. Furthermore, 
it allows for a test of autocorrelation of higher order than one, and can be used even though lagged 
dependent variables are included in the model. However, the LM test is a large sample test which means 
that it should be treated as an approximation when using small samples, compared to the DW-test that 
could be seen as an exact test. 

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

http://www.deloitte.ca/careers


Econometrics

126 

Autocorrelation and diagnostics

The LM test is executed with the following steps:

Estimate the parameters of your main model: 

ttt UXBBY ++= 10 � (10.16)

Create the residual term using the estimated parameters and lag it. 

Extend your original model by including the estimated lagged residual in the specification:

tttt VeXBBY +++= −110 ρ � (10.17)

Test the null hypothesis 0:0 =ρH  using a simple t-test. If you reject the null hypothesis you can conclude 
that you have autocorrelation. 	

The equation given by (10.17) can be extended to include more lags of the residual terms in order to 
test for higher order of autocorrelation. 

Example 10.4 

Assume that we have a time series model with two explanatory variables, and we suspect that the error 
term might be serially correlated of the second order. 

tttt UXBXBBY +++= 22110 � (10.18)

Since the error term is unobserved we need to estimate the residuals for the model using the estimated 
parameters of the model:

tttt XbXbbYe 22110 −−−= � (10.19)

Lag the estimated residuals from (10.19), re-specify equation (10.18) and receive:

tttttt VeeXBXBBY +++++= −− 221122110 ρρ � (10.20)

We estimated the parameters of the extended version of the model given by (10.20) and received the 
following estimates with standard errors within parenthesis:

( ) ( ) ( ) ( ) ( )101.0029.0192.0091.0301.1
124.0324.0562.0378.0241.3ˆ

2121 −− ++++= ttttt eeXXY � (10.21)
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By investigating the significance of the coefficients of the two residual terms, we see that the first one is 
significantly different from zero, while the other is not. We therefore conclude that the residual term is 
serially correlated of the first order only. 

Since we included lagged variables in the specification we lose some observations, and when including 
two estimated residuals as in (10.21) we loose two. If we have a large sample, losing two observations 
is not a big deal. However, if we only have 20 observations, loosing the first two observations might 
have an effect. One way to deal with this problem is to impose some values for 0e  and 1−e . Since the 
expected value of the residual terms equal zero, the missing observations could be replaced by zeros. 
Running the regression with and without the imposed values will give you an indication if the two 
missing observations are important. Other more advanced methods are available in the literature, but 
will not be discussed here. 

10.4	 Remedial measures

Once we have found that our error term is serially correlated we need to correct for it before we can make 
any statistical inference on the population. As for the case of heteroskedasticity, we need to transform 
the involved variables and therefore use generalized least square. The transformation looks different 
dependent on the order of autocorrelation. We will therefore look at the two most frequently used error 
structures, AR(1) and AR(2), and show how it should be done for those two cases. After that it should 
be an easy task to generalize the transformation method for an autoregression of order n. 

10.4.1	 GLS when AR(1)

The transformation will be explained by an example. Assume that the objective is to transform the 
following model:

ttt UXBBY ++= 10 � (10.22)

For simplicity reasons we use the specification of the simple regression model. However, the method can 
be generalized to any number of explanatory variables. The objective is to transform the autocorrelated 
Ut with something that is free from autocorrelation Vt. Assume that Ut is autoregressive of order one 
and given by:

ttt VUU += −1ρ � (10.23)

If we substitute (10.23) into (10.22) we receive:

tttt VUXBBY +++= −110 ρ � (10.24)
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Form the following expression using (10.22):

11011 −−− −−= ttt XBBYU ρρρρ � (10.25)

Substitute (10.25) into (10.24) and rearrange:

( ) ( ) ttttt VXXBBYY +−+−=− −− 1101 )1( ρρρ � (10.26)

Equation (10.26) is the transformed equation we are looking for. The error term of the original model is 
now replaced by Vt that is free from autocorrelation and we can estimate the regression equation using 
OLS. OLS, in combination with a variable transformation that results in a corrected error term, is what 
we call GLS.

10.4.2	 GLS when AR(2)

The corresponding transformation in the AR(2) case is very similar. In this case our error term has the 
following shape:

tttt VUUU ++= −− 2211 ρρ � (10.27)

With that in mind we can extend equation (10.26) in the following way:

( ) ( ) ttttttt VXXXBBYYY +−−+−−=−− −−−− 221112102211 )1( ρρρρρρ � (10.28)

The whole description above is based on the idea that the autocorrelation coefficient has been known. 
That is never the case and therefore it must be estimated. The estimated value is often received when we 
test for autocorrelation. In the Durbin Watson case the test statistic equal 

� (10.29)

This means that we can use the Durbin Watson test statistic to receive an estimate of the autocorrelation 
according to (10.29).

In case of higher order of autocorrelation the LM test should be applied. The coefficients in front of 
the lagged residual terms in (10.21) are estimates of the coefficients in (10.27). Those estimates could 
therefore be used when transforming the variables according to (10.28). 

In the literature we will be able to find more advanced method to estimate the autocorrelation coefficient 
that could be used when applying GLS. However, statistical software, such as STATA and SPSS, will do 
most of the job for us. All we have to do is to specify the variables that we would like to have in our model. 
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11	� Multicollinearity and diagnostics
Multicollinearity refers to a situation with a high correlation among the explanatory variables within a 
multiple regression model. For the obvious reason it could never appear in the simple regression model, 
since it only has one explanatory variable. In chapter 8 we shortly described the consequences of including 
the full exhaustive set of dummy variables created from a categorical variable with several categories. 
We referred to that as to fall in the dummy variable trap. By including the full set of dummy variables, 
one end up with a perfect linear relation between the set of dummies and the constant term. When that 
happens we have what is called perfect multicollinearity. In this chapter we will in more detail discuss 
the issue of multicollinearity and focus on what sometimes is called imperfect multicollinearity which 
referrers to the case where a set of variables are highly correlated but not perfect. 

Multicollinearity

The lack of independence among the explanatory variables in a data set. It is a sample problem and a state of nature 
that results in relatively large standard errors for the estimated regression coefficients, but not biased estimates. 
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11.1	 Consequences

The consequences of perfect correlation among the explanatory variables is easiest explained by an 
example. Assume that we would like to estimate the parameters of the following model:

UXBXBBY +++= 22110 � (11.1)

where X1 is assumed to be a linear combination of X2 in the following way: 

� (11.2)

and where a and b are two arbitrary constants. If we substitute (11.2) into (11.1) we receive:

� (11.3)

Since (11.1) and (11.2) implies (11.3) we can only receive estimates of  But 
since these two expressions contain three unknown parameters there is no way we can receive estimates 
for all three parameters in (11.1). We simply need more information, which is not available. Hence, with 
perfect multicollinearity it is impossible to receive an estimate of the intercept and the slope coefficients. 

This was an example of the extreme case of perfect multicollinearity, which is not very likely to happen 
in practice, other than when we end up in a dummy variable trap or a similar situation. More interesting 
is to investigate the consequences on the parameters and their standard errors when high correlation 
is present. We will start this discussion with the sample estimator of the slope coefficient B1 in (11.1) 
under the assumption that X1 and X2 is highly correlated but not perfect. The situation for the sample 
estimator of B2 is identical to that of B1 so it is not necessary to look at both. The sample estimator for 
B1 is given by:

� (11.4)

The estimator b1 is a function of rY1 which is the correlation between Y and X1, r12 the correlation between 
X1 and X2, rY2 the correlation between Y and X2, SY and S1 which are the standard deviations for Y and 
X1 respectively. 
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The first thing to observe is that r12 appears in both the numerator and the denominator, but that it is 
squared in the denominator and makes the denominator zero in case of perfect correlation. In case of a 
strong correlation, the denominator has an increasing effect on the size of the expression but since the 
correlation coefficient appears in the numerator as well with a negative sign, it is difficult to say how the 
size of the parameter will change, without any further assumptions. However, it can be shown that the 
OLS estimators remain unbiased and consistent, which means that estimated coefficients in repeated 
sampling still will center around the population coefficient. On the other hand, this property says nothing 
about how the estimator will behave in a specific sample. Therefore we will go through an example in 
order to shed some light on this issue. 

Example 11.1

Consider the following regression model:

UXBBY ++= 110

We would like to know how the estimate of B1 changes when we include another variable X2 that is 
highly correlated with X1. Using a random sample of 20 observations we calculate the following statistics. 

For the simple regression case we receive:

For the multiple regression case when including both X1 and X2 we receive:

211.0
0.5
1.5

924.01
878.0924.0843.0

2
*
1 =×

−
×−

=b .

Hence, when including an additional variable the estimated coefficient decreased in size as a result of the 
correlation between the two variables. Is it possible to find an example where the estimator is increasing 
in size in absolute terms? Well, consider the case where X2 is even more correlated with X1, lets say that 
r12=0.99. That would generate a negative estimate and the small number in the denominator will make 
the estimate larger in absolute terms. It is also possible to make up an examples where the estimator 
moves in the other direction. Hence, the estimated slope coefficient could move in any direction as a 
result of multicollinearity. 
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In order to analyze how the variance of the parameter estimates change it is informative to look at the 
equation for the variance. The variance of (11.4) is given by the following expression
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When the correlation between X1 and X2 equals zero, will the variance of the multiple regression 
coefficient coincide with the variance for the coefficient of the simple regression model. However, 
when the correlation equals 1 or -1 the variance given by (11.5) will be undefined just as the estimated 
slope coefficient. In sum, the greater the degree of the multicollinearity, the less precise will be the 
estimates of the parameters, which means that the estimated coefficients will vary a lot from sample to 
sample. But make no mistakes; collinearity does not destroy the nice property of minimum variance 
among linear unbiased estimator. It still has a minimum variance, but minimum variance does not 
mean that the variance will be small.  

It seems like the level of both the estimated parameter and its standard error are affected by 
multicollinearity. But how will this affect the ratio between them; the t-value. It can be shown that the 
computed t-value in general will decrease since the standard error is affected more strongly compared 
to the coefficient. This will usually result in non-significant parameter estimates. 

Another problem with multicollinearity is that the estimates will be very sensitive to changes in 
specification. This is a consequence from the fact that there is very little unique variation left to 
explain the dependent variable since most of the variation is in common between the two explanatory 
variables. Hence, the parameter estimates are very unstable and sometimes it can even result in wrong 
signs for the regression coefficient, despite the fact that it is unbiased. A wrong sign is referred to a 
sign that is unexpected according to the underlying theoretical model, or the prior believes based on 
common sense. However, sometimes we are dealing with inferior goods which means that we have to 
be careful with what we call “wrong” sign. Unexpected signs usually require more analysis to 
understand where it comes from.  

11.2 Measuring the degree of multicollinearity 

Three measures of the degree of multicollinearity are often suggested in the literature: the use of a 
correlation matrix, the Variance Inflation Factor (VIF), and the tolerance measure. All statistical 
measures have their limitations, and therefore it is always useful to use several measures when 
investigating the statistical properties of a data set. 

Assume that we would like to estimate the parameters of the following model: 

UXBXBXBBY 3322110  (11.6) 

Multicollinearity and diagnostics

� (11.5)

When the correlation between X1 and X2 equals zero, will the variance of the multiple regression 
coefficient coincide with the variance for the coefficient of the simple regression model. However, when 
the correlation equals 1 or -1 the variance given by (11.5) will be undefined just as the estimated slope 
coefficient. In sum, the greater the degree of the multicollinearity, the less precise will be the estimates 
of the parameters, which means that the estimated coefficients will vary a lot from sample to sample. 
But make no mistakes; collinearity does not destroy the nice property of minimum variance among 
linear unbiased estimator. It still has a minimum variance, but minimum variance does not mean that 
the variance will be small. 

It seems like the level of both the estimated parameter and its standard error are affected by multicollinearity. 
But how will this affect the ratio between them; the t-value. It can be shown that the computed t-value 
in general will decrease since the standard error is affected more strongly compared to the coefficient. 
This will usually result in non-significant parameter estimates.
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Another problem with multicollinearity is that the estimates will be very sensitive to changes in 
specification. This is a consequence from the fact that there is very little unique variation left to explain 
the dependent variable since most of the variation is in common between the two explanatory variables. 
Hence, the parameter estimates are very unstable and sometimes it can even result in wrong signs for 
the regression coefficient, despite the fact that it is unbiased. A wrong sign is referred to a sign that 
is unexpected according to the underlying theoretical model, or the prior believes based on common 
sense. However, sometimes we are dealing with inferior goods which means that we have to be careful 
with what we call “wrong” sign. Unexpected signs usually require more analysis to understand where 
it comes from. 

11.2	 Measuring the degree of multicollinearity

Three measures of the degree of multicollinearity are often suggested in the literature: the use of a 
correlation matrix, the Variance Inflation Factor (VIF), and the tolerance measure. All statistical 
measures have their limitations, and therefore it is always useful to use several measures when investigating 
the statistical properties of a data set.

Assume that we would like to estimate the parameters of the following model:

UXBXBXBBY ++++= 3322110 � (11.6)

We suspect that the variables are highly correlated and would like to investigate the matter. A natural 
starting point would be to look at a simple correlation matrix to investigate the pair wise correlations 
between the variables. That is easily done using any statistical software. Having access to a random sample 
of 20 observations we received the following results:

X1 X2 X3

X1 1 0.924 0.458

X2 1 0.085

X3 1

Table 11.1 A correlation matrix for the explanatory variables in (11.6)

As can be seen from Table 11.1 some of the variables are highly correlated with each other, such as X1 
and X2. X1 is also correlated with X3 but to a much lower degree and the correlation between X2 and X3 
is basically zero. From the results of the table we can be sure that B1 and B2 will be difficult to estimate 
with any good precision, since the correlation between X1 and X2 will inflate their standard errors. 
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To further analyze the multicollinearity we turn to the next measure which is called the Variance Inflation 
Factor (VIF). It is defined in the following way:

21
1)(

i
i R

bVIF
−

= � (11.7)

where 2
iR  is the squared multiple-correlation coefficient. The squared multiple-correlation coefficient for 

a specific parameter is a measure of the linear strength between a variable Xi and the rest of the variables 
included in the model. The squared multiple-correlation coefficient is nothing else than the coefficient 
of determination received from a auxiliary regression made for each variable against the other variables 
in the model. That is 

When the model contains only two explanatory variables the squared multiple correlation will coincide 
with the squared bivariate correlation coefficient between the two variables in the model. If we look at 
(11.5) we will see that the variance inflation factor is included in that expression, and is the factor that is 
multiplied with the variance of the coefficient of the simple regression model. Hence it is a measure that 
relates to the case of no correlation, and how the variance is inflated by imposing the correlation. The 
expression for the variance in the case of more than two explanatory variables has a similar expression 
but with the squared multiple correlation coefficient instead. 

VIF takes values from 1 up to any large number. The closer the multiple-correlation coefficient is to one, 
the larger the value of VIF. Part of the definition of VIF, is the other multicollinearity statistic called 
the tolerance. The tolerance measure is the denominator of the VIF expression. Since the square of the 
multiple-correlation coefficient is a coefficient of determination we could interpret it as such. That means 
that we have a measure of how large share of the variation in one variable that is explained by a group 
of other variables. Hence, 1 minus this share would be interpreted as how much of the variation that is 
left unique for the specific variable and could be used to explain the dependent variable. 

When are VIF and the tolerance an indication of a multicollinearity problem? We can shed some lights on 
that question by an example. Let us go back to model (11.6) and check the VIF and tolerance condition 
for the variables in that case. Most statistical software has routines for this, and hence we should not 
need to run the auxiliary regression by our self. Using one such routine in SPSS we received the following 
regression results and collinearity statistics:
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P.E. S.E. VIF Tolerance

Constant 117.085 99.782 - -

X1 4.334 3.016 708.843 0.00141

X2 -2.857 2.582 564.343 0.00177

X3 -2.186 1.595 104.606 0.00956

R2 0.801

Test of over all significance: F =21.516

P-value <0.0001

Table 11.2 Regression results for (11.6)

From Table 11.2 we see that none of the coefficients are significantly different from zero. We also observe 
that the coefficient of determination is above 80 percent. That implies that 80 percent of the variation in the 
dependent variable is explained by the three explanatory variables included in the model. Furthermore, 
the test of overall significance of the model is highly significant which is in line with the measure of 
fit. The picture described here is a good example of the consequences of high correlation between the 
involved variables. It will blow up the standard errors of the model even though the model as such has 
explanatory power. 
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When we are exposed to a situation like this, we must go on and calculate some multicollinearity 
statistics such as VIF and the tolerance for each variable. In the table we see that VIF take large values 
for all variables if we compare to the case of no correlation that results in VIF=1. From the analysis 
of the pair wise correlations we know that the reason for X3 to have a relatively large VIF number is 
mainly due to the correlation with X2, since the correlation with X1 is very weak. Even so, VIF for X3 
is 104 and the corresponding tolerance is as low as 0.009 which means that X1 and X2 only leave 0.9 
percent unique variation left of X3s total variation that can be used in explaining the variation in Y. The 
remaining variation was in common with the other two variables and hence must be disregared. One 
should observe that even though the par-wise correlations are relatively low, their multiple-regression 
correlation is much higher, which emphasize the shortcomings of only looking at pair-wise correlations. 

11.3	 Remedial measures 

With a given specification and data set there is not much one can do about the multicollinearity problem. 
It could therefore be seen as a state of nature in which data offers no information about some hypothesis 
that could have been tested using t-tests for the parameters of the model. 

Doing nothing is most often not a very attractive alternative. If the alternative of receiving more data is 
possible, it would be a good solution. It would not solve the multicollinearity problem, but the small unique 
variation that exist, will be based on more data and if the increase in the number of observations is large 
enough, it could help increasing the precision of the estimators. To receive more data, and sometimes 
very much more data, is often very costly and/or time consuming and therefore often not an alternative.

Another alternative would be to change the variable specification. One way of doing that would be to 
drop one of the variables. If we, in the first place, had an economic relevant specification we know that 
the estimated parameters will be biased and inconsistent if dropping a relevant variable. Hence, we would 
only replace one problem with another and this alternative is therefore in general not very attractive.

An alternative approach would be to rethink the model so that it could be expressed in an alternative 
way. One way of doing that could be to categorize one of the problematic variables. In our example 
discussed above it was problematic to include X1 and X2 in the same regression. But if we replace X1, 
which is a continuous variable, with level indicators (dummy variables) instead it would hedge the strong 
correlation with X2 and increase the precision of the estimates. However, that would mean a slightly 
different model, and we have to be willing to accept that. 

In the literature there are other more or less restrictive methods described to handle this problem, and 
non of them are very convincing in there way of reducing the problem. We will therefore not go into any 
of those more advanced techniques here, since they require more statistical knowledge that is beyond 
the scope of this text. But remember, multicollinearity is a state of nature, and is therefore not something 
that you solve, but instead something that you have to live with.
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12	 Simultaneous equation models
One important assumption of the basic linear regression model is that the error term has to be uncorrelated 
with the explanatory variables. If the explanatory variables are in fact correlated with the error term, it 
would lead to inconsistent estimates of the parameters of the model. In this chapter we will relax this 
assumption by including additional equations to the model that explains where the correlation is coming 
from, and discuss the conditions that need to be fulfilled to receive consistent estimate.

12.1	 Introduction

This chapter will only scratch the surface of the issues involved in estimating simultaneously equations 
and should therefore be seen as an introduction to the subject. In order for the explanatory variables 
to be correlated with the error term, they need to be considered random, which was not the case in the 
previous chapters. The assumption of random explanatory variables does not change anything related to 
the property of the OLS estimators but it allows for the possibility of being correlated with the error term. 

What are the consequences of having the explanatory variable being correlated with the error term? The 
answer to that question is very similar to the case when we have measurement errors in the explanatory 
variables, which make the estimates bias and inconsistent. To see this, consider the following simple 
macro economic model of income determination:

ttt ICY += � (12.1)

ttt UYBBC ++= 10 � (12.2)

with Yt being the national income, It investments, Ct the consumption expenditure and Ut a stochastic 
term. Equation (12.1) is an identity and an equilibrium condition. Hence this model is formulated 
under the condition of being in equilibrium, and the equation show how national income is related 
to consumption and investment in equilibrium. The second, equation given by (12.2), is a behavioral 
equation since it defines the behavior of the consumption expenditure in this economy. Equations with 
stochastic error terms are to be considered behavioral. Since Yt and Ct are left hand variables in this system 
of equations, their values are determined by the model. We therefore say that Yt and Ct are endogenous 
variables. We have an additional variable included in the model which is the investment. Since it is a 
right hand variable in the consumption function we say that it is an exogenous variable, which is to say 
that the value of investments are determined outside the model, it is predetermined. Since investment 
is determined outside the model it is also uncorrelated with the stochastic term Ut. 
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The system of equations can be solved with respect to the two endogenous variables in order to receive 
their long run expressions. To solve the system with respect to Yt, we substitute (12.2) into (12.1) and 
solve for Yt. That results in the following expression:

ttt U
B

I
BB

BY
111

0
1

1
1

1
1 −

+
−

+
−

= � (12.3)

In order to receive the long run expression for consumption expenditure, we substitute (12.1) into (12.2) 
and solve for Ct: 
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+
−

+
−

= � (12.4)

With this setup it is easy to describe the consequences of estimating (12.2) ignoring the fact that it is 
part of a system. From (12.3) we can see that Yt is a function of Ut which means it is correlated with Ut. 
Since Yt is correlated with Ut, we can not use OLS to estimate the coefficients of (12.2) without bias. If 
consumption expenditure had not been part of this system one could have argued that Yt and Ut in fact 
are uncorrelated. But when that is not the case we see from (12.3) how they are related. 

It should now be obvious that the OLS estimators are biased in small samples due to the correlation 
between Yt and Ut. But are they also inconsistent? That is, if we increase the number of observations to 
a very large number, will the estimators still be biased? To see this consider the OLS estimator for B1: 
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This expression was developed in chapter 3 (see (3.12)). If we take the expected value of the estimator 
we will receive:
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The problem with the expectation on the right hand side is that Yt is a random variable and correlated 
with Ut, and for that reason we can not proceed as in chapter 3. Furthermore, since the expectation 
is a linear operator we have that [ ] [ ] [ ]BEAEBAE // ≠ , which further complicates the problem. Even 
though this makes it clear that the estimator no longer is unbiased, we do not know how the second 
component on the right hand side of (12.6) behave in large samples. It can be shown that the limit of 
the OLS estimator is given by the following expression:
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(12.7) show that in the limit the sample estimator still deviate from the population parameter, which 
means that the bias remains in large samples. 

Correlation between the error term and the explanatory variables in a single equation model using OLS would 
lead to:

•	 Biased and inconsistent parameter estimates
•	 Invalid tests of hypothesis 
•	 Biased and inconsistent forecasts

12.2	 The structural and reduced form equation

From the previous discussion we learned that when an equation belongs to a system of equation, 
estimating them separately using OLS would lead to biased and inconsistent estimates. Hence, in order 
to be able to estimate the parameters of the equation system it is important to consider the whole system 
since they interact with each other. Before going into issues of estimation we need to define some more 
concepts. Consider the following system of equations:

ttt UYAAC 110 ++= � (12.8)

ttt URBBI 210 ++= � (12.9)

tttt GICY ++= � (12.10)
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It is a macro economic model that extends the example from the previous section and is based on three 
equations. It is an income determination model, with two behavioral equations; one for consumption 
expenditure Ct, and one for net-investments It. The consumption function is a function of income Yt and 
the investment function is a function of interest rate Rt. The income equation that specifies the equilibrium 
condition is a function of consumption, investment and government spending Gt. This model has three 
endogenous variables, Ct, It, and Yt, and two exogenous variables Rt and Gt that are pre determined. 

The system of equations given by (12.8)–(12.10) describes the structure of the economy that we would 
like to investigate. For that reason these equations are called structural equations. The coefficients of 
the structural equations represent the direct effect of a change in one of the explanatory variables. If 
we take (12.9) as an example, B1 represents the marginal propensity to invest as a result from a change 
in the interest rate. This represents the direct effect of a change in interest rate on the net-investment. 

Assume that we increase the interest rate. That will have a direct effect on the investments in this model, 
which in a second step via the equilibrium condition will have an effect on the income. The income 
in its term will affect the consumption level, and since income is endogenous it will have an effect the 
error term U1 since they are correlated. The initial change in the interest rate, will in this way, affect the 
components in the system until the effect reaches its equilibrium level. 

We can therefore talk about two types of effect; the short run effect and the long run effect. The long run 
effect can be received from the long run relationship that can be determined by solving the structural 
equation system with respect to the endogenous variables. To solve the system for Yt we simply substitute 
(12.8) and (12.9) into (12.10) and solve for Yt. If we do that we receive:
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If we do the similar thing with respect to the other two endogenous variables we would receive the 
following expressions:
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ttt URBBI 210 ++= � (12.13)

Download free eBooks at bookboon.com



Econometrics

141 

Simultaneous equation models

By solving the structural system of equations with respect to the endogenous variables we have determined 
the reduced form equations for income, consumption and investment. The coefficients of the reduced 
form equations represent the full effect when the system is in equilibrium. The full effect of a change in 
interest rate on income is represented by B1/(1-A1). It is also called the interest rate multiplier on income. 
There is a corresponding multiplier related to consumption and investments that can be found in their 
reduced form equations. Observe that the reduced form equation for investments only is a function of 
interest rate. Government spending does not have any affect on the investment, even though it has an 
effect on consumption and income. 

The nice thing with the reduced form equations is that they may be estimated separately using OLS. 
That is, the coefficients in the reduced form equations can be consistently estimated using OLS.  
Since the structural parameters are part of the reduced form coefficients it is sometimes possible to 
indirectly find the structural coefficient using the estimated values of the reduced form coefficients. 
For that to be possible, a certain requirement needs to be fulfilled: the structural coefficients must be 
exactly identified. 

12.3	 Identification

In order to be able to estimate the structural equation coefficients they need to be identified. So, what 
do we mean by that? To give an intuitive feeling for its meaning we will give an example before going 
into any formal and mechanical tests. 

Consider the following two equation system:

11210 UXAPAAQ +++=  	 (Supply)� (12.14)

210 UPBBQ ++= 		  (Demand)� (12.15)

This system contains two endogenous variables (P and Q), and one exogenous (X1) variable. These two 
equations represent a demand and supply system for a given market. The question is if any of these two 
equations are identified. That is to ask if the parameters of the two equations can be estimated consistently. 
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It turns out that the demand function is identified while the supply function is not. To see this, consider 
Figure 12.1. In order to identify the demand function we need some exogenous variation that could help 
us trace out the function. That could be done using the supply function. The supply function contains 
an exogenous variable X1 and the supply function takes a new position for each value of X1. In that 
process we identify the demand function. But in the demand function we have nothing unique that 
does not appear in the supply function so it is impossible to move the demand function while holding 
the supply function fixed. Hence it is the presence of an exogenous variable in one equation that allows 
us to estimate the parameters of the other equation. If X1 had been included in both equations there 
would have been no unique variation in any of the equations and hence no equation had been identified. 
However, if another exogenous variable, X2, had been introduced and placed in the demand function, 
we would receive some exogenous variation that could help us to identify the supply function. In that 
case both equations would have been identified. 

Figure 12.1 Demand and supply system

The process of identifying equations can be formalized in a decision rule that specify the conditions that 
have to be fulfilled in order to identify one or several equations in a system. In the literature two rules 
are described and one is slightly easier to use than the other. 

12.3.1	 The order condition of identification

The first decision rule for identification is the so called order condition. This rule specifies the necessary 
conditions for identification and is the more popular one of the two rules that will be discussed. 
Unfortunately it is not a sufficient rule, which means that it is possible that the equation is undefined 
even though the order condition says it is identified. However, in a system with only two equations, the 
order condition will work well and can be trusted. 
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Define the following variables:

M = The number of endogenous variables in the model

K = The number of variables (endogenous and exogenous) in the model excluded 
from the equation under consideration.

The order condition states that:

1) If 1−= MK => The equation is exactly identified

2) If 1−> MK => The equation is over identified

3) If 1−< MK => The equation is under identified

When checking the order condition you have to do it for each equation in the system.

Example 12.1 

Consider the following system:

1122101 UXAYAAY +++= � (12.16)

2221102 UXBYBBY +++= � (12.17)
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Use the order condition to check if the equations are identified. In order to do that, we need to determine 
the value of M and K. This system contains two endogenous variables and the total number of variables, 
endogenous as well as exogenous, is four. 

For the first equation we have M-1=1 and K=1 since X2 is excluded from (12.16). Since M-1=K we have 
that the first equation is exactly identified. 

For the second equation we have M-1=1 and K=1 since X1 is excluded from (12.17). Since M-1=K we 
have that also the second equation is exactly identified. When all the equations of the model are identified 
we say that the model is identified since we are able to estimate all the structural parameters. 

Example 12.2

Consider the following system:

133122101 UXAXAYAAY ++++= � (12.18)

2221102 UXBYBBY +++= � (12.19)

In this example we have two endogenous variables and three exogenous variables with a total of five 
variables. M-1 will in this example equal 1 as before since we still have only two endogenous variables. 
Will the equations be identified in this case? The first equation contains four variables which means that 
one variable has been excluded from the equation, that is, X2 does not appear in equation 1 and K=1. 
Since M-1=K the equation is exactly identified. 

The second equation includes three variables which mean that two variables have been excluded. That is, 
X1 and X3 are not included in equation 2. That means that K=2, which means that M-1<K which leads 
to the conclusion that equation 2 is over identified. 

12.3.2	 The rank condition of identification 

The rank condition is slightly more complicated when dealing with larger systems of equations, but 
when using only two equations it is as easy as the order condition. The rank condition is a necessary 
and sufficient condition, which means that if we can identify the equations using the rank condition we 
can be sure that the equation really is identified. The rank condition investigates whether two or more 
equations are linearly dependent on each other, which would be the case if the sum of two equations 
would equal a third equation in the model. If that is the case it is impossible to identify all structural 
parameters. The basic steps in this decision rule is best described by an example. 
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Example 12.3

Consider the following system of equations:

133123101 UXAXAYAAY ++++= � (12.20)

233221102 UXBXBYBBY ++++= � (12.21)

323122103 UXAXAYCCY ++++= � (12.22)

This system contains three endogenous variables (Y1, Y2, Y3) and three exogenous variables (X1, X2, X3), 
which means that we in total has six variables. The first step in checking the rank condition is to put up a 
matrix that for each equation mark which of the six variables that are included (marked with 1) and which 
that are excluded (marked with 0) from the equation. For our system we receive the following matrix:

Matrix for the rank condition

Y1 Y2 Y3 X1 X2 X3

Equation 1 1 0 1 1 0 1

Equation 2 1 1 0 0 1 1

Equation 3 0 1 1 1 1 0

In order to check the rank condition for the first equation we have to proceed as follows: Delete the first 
row and collect the columns for those variables of the first equation that were marked with zero. For 
equation 1, Y2 and X2 was marked with zero, and if we collect those two columns we receive:

1	 1		   			   1	 1

If this matrix contains less than M-1 rows or columns where all elements are zero, equation 1 will not 
be identified. M refers to the number of equation just as in the order condition, which means that 
M-1=2. Since we have two rows and two columns and none of them contains only zeros we conclude 
that equation 1 is identified. 

For equation 2 we proceed in the same way. We delete the second row and collect those columns where 
the elements of the second row were marked with a zero. For equation 2 that was the case for Y3 and 
X1, which is to say that these two variables was not included in equation 2. The resulting matrix for this 
case then becomes:

	 1		  1
	 1		  1
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It looks in the same way as for equation 1, which means that we have two rows and two columns that 
is not only zeros. The same procedure should be done for the third equation and if you do that you will 
see that it is identified as well. 

When using larger systems it is quite possible that the order condition says that a particular equation 
is identified even though the rank condition says it is not. When that happens it might still be possible 
to generate estimates, but those estimates will not have any economic meaning since they will represent 
averages of those equations that are linear combinations of each other. Hence, you should not be content 
that you have received identified results just because the order condition says so and the econometric 
software generates results for you. When using systems of more than two equations you should also 
confirm the identification using the rank condition. 

12.4	 Estimation methods

Once we have confirmed that our model is identified we can proceed with the estimation of the parameters 
of the structural coefficients. In this section we will present two methods of estimation that can be used 
to estimate coefficients of a simultaneous equation system. 
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12.4.1	 Indirect Least Squares (ILS)

When all the equations are exactly identified one can use the method of Indirect Least Square to estimate 
the coefficients of the structural equations. It is done by the following three steps:

1)	 Form the reduced form equations
2)	 Estimate the coefficients of the reduced form using OLS
3)	 Use the estimated coefficients of the reduced form to derive the structural coefficients.

Example 12.4 (ILS)

Consider the following simple macro economic model:

ttt ICY += � (12.23)

ttt UYBBC ++= 10 � (12.24)

This model has two endogenous variables (Yt and Ct) and one exogenous variable (It), and we would like 
to estimate the coefficients of the behavioral equation. Since one of the variables of the model is excluded 
from the consumption function it is identified according to the order condition. The two structural 
equations could be used to form the reduced form equations for consumption. If we do that we receive:

ttt VIC ++= 10 ππ � (12.25)

(13.3) and (13.4) show how the reduced form coefficients are related to the structural coefficients. By 
using the estimated values of the reduced form coefficients we can solve for the structural coefficients. 
We have:

1

0
0 1 B

B
−

=π � (12.26)

1

1
1 1 B

B
−

=π � (12.27)

(12.26) and (12.27) can now be used to solve for B0 and B1. Since (12.27) is an equation with only one 
unknown we solve for B1 first (remember that 1π  is an estimate and therefore a number in this expression). 
Once we receive the value of B1 we can use it in (12.26) to solve for B0. Hence we receive:

1

0
0 1 π

π
−

=B  and 
1

1
1 1 π

π
−

=B
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In order to determine the standard errors for B0 and B1 we can use linear approximations to their 
expression based on the standard errors and covariance of the reduced form estimated coefficients. It 
can be shown that the corresponding variance for B0 and B1 is:

with 
01

1
π−

=a  and 
2

1)1(
1
π−

=b  and where 2
0σ is the variance of 0π , 2

1σ the variance for 1π  and  

the covariance between 0π and 1π . 

ILS will result in consistent estimates but will still be biased in small samples. When using larger systems 
with more variables and equations it is often burdensome to find the estimates, and in those cases the 
equations are often over identified, which means that ILS cannot be used. For that reason ILS is not used 
very often in practice. Instead a much more popular method called 2SLS is used. 

12.4.2	 Two Stage Least Squares (2SLS)

The procedure of 2SLS is a method that allows you to receive consistent estimates of the structural 
coefficient when the equations are exactly identified as well as over identified. However, the estimates 
will still be biased in small samples. 

Consider the following model 

124132101 UXAXAYAAY ++++= � (12.28)

244331102 UXBXBYBBY ++++= � (12.29)

This model has two endogenous variables and four exogenous variables. The first equation (12.28) contains 
four variables which means that from a total of six variables, two has been omitted. That means that it is 
over identified. The same can be said about the second equation (12.29), which means that the model is 
identified. Since both equations are over identified we cannot estimate the structural parameters using 
ILS, but instead we are forced to use 2SLS. We will now focus the discussion on the estimation of the 
first equation. 
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The basic steps of 2SLS applied for equation (12.28):

Step 1 Derive the reduced form equation for Y2 and estimate the predicted value of Y2 )ˆ( 2Y on 
the reduced form using OLS.

4433221102 ˆˆˆˆˆˆ XXXXY πππππ ++++=

Step 2 Replace Y2 in equation (12.28) with its predicted value from the reduced form and estimate 
the coefficient of the model using OLS.

124132101
ˆ UXAXAYAAY ++++=

If these two steps are applied we will receive consistent estimates of the parameters in (12.28). That is, since 
we replace the endogenous variable with its predicted value, it is no longer correlated with the residual 
term. Hence, the problem is solved. Remember that 222

ˆ VYY += which implies that the stochastic variable 
Y2, consist of two parts, one that is a linear combination of the exogenous (predetermined) variables and 
one random part. A group of exogenous variables are by necessity uncorrelated with the random term. 

Observe that X1 and X2 both appear in the specification of Y1 and 2̂Y , which means that there will be 
a correlation between the explanatory variables X1 and X2 and 2̂Y . This correlation will not be perfect 
unless X3 and X4 also is included in the structural model of the first equation and is therefore nothing 
to worry about. But if that happens, the equation would not pass the order condition for identification. 
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There is one additional complication to be aware of when working with 2SLS. When the predicted 
value is included in the specification, the variance of the error term will not be correct. To see this we 
will consider a simplified version of a model to make it clear where the problem appear. Consider the 
following equation:

iii UYBY 1211 += � (12.30)

In order to receive consistent estimates of B1 we replace Y2 with its predicted value and estimate the 
parameters of following regression model using OLS:

121211211
ˆ)(ˆ VYBUBUYBY iiiii +=++= � (12.31)

The estimator of the slope coefficient is therefore given by the following expression:
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We have concluded that this form of the estimator is consistent but not unbiased. Since it is consistent 
we need to compare it with its asymptotic variance, that is, the formula of the variance when the number 
of observation is very large (has gone to infinity). It can be shown that the asymptotic variance of this 
sample estimator is given by the following expression:

( )
( )∑

=

−
= n

i
i

U

YY
bV

1

2
22

2

1
ˆˆ

σ
� (12.33)

This is good, because it is very similar to the variance given by the standard OLS. So what is the problem? 
The problem is related to the estimated variance of the error term. When running the regression using 
(12.31) our estimated residual would be given by:

( )∑
=

−=
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i
iiV YbY

n 1

2
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2 ˆ1σ̂ � (12.34)

Whereas the estimated residual should be given by the following expression 

( )∑
=

−=
n

i
iiU YbY

n 1

2
211

2 1σ̂ � (12.34)

Download free eBooks at bookboon.com



Econometrics

151 

Simultaneous equation models

(12.34) is based on the observed variable Y2 multiplied with the sample estimator b1 given by (12.32), 
rather than the predicted version of the variable. Hence in order to receive consistent estimates of the 
standard errors, one has to use (12.34). When using commercial software with routines for 2SLS they 
automatically make the correction. But if we run 2SLS in two steps, as described above, we need to 
correct the standard errors, before we can perform any hypothesis testing. 

In sum, the 2SLS has the following properties:

It generates biased but consistent estimates

The distribution of the estimators are normally distributed only in large samples

The variance is biased but consistent when using (12.34)
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13	 Statistical tables
Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.5 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.5279 0.53188 0.53586

0.1 0.53983 0.5438 0.54776 0.55172 0.55567 0.55962 0.56356 0.56749 0.57142 0.57535

0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409

0.3 0.61791 0.62172 0.62552 0.6293 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173

0.4 0.65542 0.6591 0.66276 0.6664 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793

0.5 0.69146 0.69497 0.69847 0.70194 0.7054 0.70884 0.71226 0.71566 0.71904 0.7224

0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.7549

0.7 0.75804 0.76115 0.76424 0.7673 0.77035 0.77337 0.77637 0.77935 0.7823 0.78524

0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327

0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891

1 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214

1.1 0.86433 0.8665 0.86864 0.87076 0.87286 0.87493 0.87698 0.879 0.881 0.88298

1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147

1.3 0.9032 0.9049 0.90658 0.90824 0.90988 0.91149 0.91309 0.91466 0.91621 0.91774

1.4 0.91924 0.92073 0.9222 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189

1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408

1.6 0.9452 0.9463 0.94738 0.94845 0.9495 0.95053 0.95154 0.95254 0.95352 0.95449

1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.9608 0.96164 0.96246 0.96327

1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062

1.9 0.97128 0.97193 0.97257 0.9732 0.97381 0.97441 0.975 0.97558 0.97615 0.9767

2 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.9803 0.98077 0.98124 0.98169

2.1 0.98214 0.98257 0.983 0.98341 0.98382 0.98422 0.98461 0.985 0.98537 0.98574

2.2 0.9861 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.9884 0.9887 0.98899

2.3 0.98928 0.98956 0.98983 0.9901 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158

2.4 0.9918 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361

2.5 0.99379 0.99396 0.99413 0.9943 0.99446 0.99461 0.99477 0.99492 0.99506 0.9952

2.6 0.99534 0.99547 0.9956 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643

2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.9972 0.99728 0.99736

2.8 0.99744 0.99752 0.9976 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807

2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861

3 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.999

3.1 0.99903 0.99906 0.9991 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929

3.2 0.99931 0.99934 0.99936 0.99938 0.9994 0.99942 0.99944 0.99946 0.99948 0.9995

3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.9996 0.99961 0.99962 0.99964 0.99965

3.4 0.99966 0.99968 0.99969 0.9997 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976

Table A1. Area below the standard normal distribution: )( zZP ≤

Example: Find the probability that Z is less then 1.33: 90824.0)33.1( =≤ZP
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Probability

Degrees of 
freedom

0.25
0.50

0.10
0.20

0.05
0.10

0.025
0.050

0.01
0.02

0.005
0.010

0.001
0.002

1 1.000001 3.077685 6.313749 12.70615 31.82096 63.6559 318.2888

2 0.816497 1.885619 2.919987 4.302656 6.964547 9.924988 22.32846

3 0.764892 1.637745 2.353363 3.182449 4.540707 5.840848 10.21428

4 0.740697 1.533206 2.131846 2.776451 3.746936 4.60408 7.17293

5 0.726687 1.475885 2.015049 2.570578 3.36493 4.032117 5.893526

6 0.717558 1.439755 1.943181 2.446914 3.142668 3.707428 5.207548

7 0.711142 1.414924 1.894578 2.364623 2.997949 3.499481 4.785252

8 0.706386 1.396816 1.859548 2.306006 2.896468 3.355381 4.500762

9 0.702722 1.383029 1.833114 2.262159 2.821434 3.249843 4.29689

10 0.699812 1.372184 1.812462 2.228139 2.763772 3.169262 4.143658

11 0.697445 1.36343 1.795884 2.200986 2.718079 3.105815 4.024769

12 0.695483 1.356218 1.782287 2.178813 2.68099 3.054538 3.929599

13 0.69383 1.350172 1.770932 2.160368 2.650304 3.012283 3.852037

14 0.692417 1.345031 1.761309 2.144789 2.624492 2.976849 3.787427

15 0.691197 1.340605 1.753051 2.131451 2.602483 2.946726 3.732857

16 0.690133 1.336757 1.745884 2.119905 2.583492 2.920788 3.686146

17 0.689195 1.333379 1.739606 2.109819 2.56694 2.898232 3.645764

18 0.688364 1.330391 1.734063 2.100924 2.552379 2.878442 3.610476

19 0.687621 1.327728 1.729131 2.093025 2.539482 2.860943 3.579335

20 0.686954 1.325341 1.724718 2.085962 2.527977 2.845336 3.551831

21 0.686352 1.323187 1.720744 2.079614 2.517645 2.831366 3.527093

22 0.685805 1.321237 1.717144 2.073875 2.508323 2.818761 3.504974

23 0.685307 1.319461 1.71387 2.068655 2.499874 2.807337 3.484965

24 0.68485 1.317835 1.710882 2.063898 2.492161 2.796951 3.466776

25 0.68443 1.316346 1.70814 2.059537 2.485103 2.787438 3.450186

26 0.684043 1.314972 1.705616 2.055531 2.478628 2.778725 3.43498

27 0.683685 1.313704 1.703288 2.051829 2.472661 2.770685 3.42101

28 0.683353 1.312526 1.70113 2.048409 2.467141 2.763263 3.408204

29 0.683044 1.311435 1.699127 2.045231 2.46202 2.756387 3.396271

30 0.682755 1.310416 1.69726 2.04227 2.457264 2.749985 3.385212

35 0.681564 1.306212 1.689573 2.03011 2.437719 2.723809 3.340028

40 0.680673 1.303076 1.683852 2.021075 2.423258 2.704455 3.306923

45 0.679981 1.30065 1.679427 2.014103 2.412116 2.689594 3.281457

50 0.679428 1.298713 1.675905 2.00856 2.403267 2.677789 3.261375

60 0.678601 1.295821 1.670649 2.000297 2.390116 2.660272 3.231689

80 0.677569 1.292224 1.664125 1.990065 2.373872 2.638699 3.195237

100 0.676951 1.290075 1.660235 1.983972 2.364213 2.625893 3.173773

∞ 0.67449 1.281551 1.644853 1.959966 2.326351 2.575835 3.090245

Table A2 Right tail critical values for the t-distribution

Note: The smaller value at the head of each column is the area in one tail, the larger value is the area in both tails.
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Probability

Degrees of freedom 0.100 0.050 0.025 0.010 0.005

1 2.705541 3.841455 5.023903 6.634891 7.8794

2 4.605176 5.991476 7.377779 9.210351 10.59653

3 6.251394 7.814725 9.348404 11.34488 12.83807

4 7.779434 9.487728 11.14326 13.2767 14.86017

5 9.236349 11.07048 12.83249 15.08632 16.74965

6 10.64464 12.59158 14.44935 16.81187 18.54751

7 12.01703 14.06713 16.01277 18.47532 20.27774

8 13.36156 15.50731 17.53454 20.09016 21.95486

9 14.68366 16.91896 19.02278 21.66605 23.58927

10 15.98717 18.30703 20.4832 23.20929 25.18805

11 17.27501 19.67515 21.92002 24.72502 26.75686

12 18.54934 21.02606 23.33666 26.21696 28.29966

13 19.81193 22.36203 24.73558 27.68818 29.81932

14 21.06414 23.68478 26.11893 29.14116 31.31943

15 22.30712 24.9958 27.48836 30.57795 32.80149

16 23.54182 26.29622 28.84532 31.99986 34.26705

17 24.76903 27.5871 30.19098 33.40872 35.71838

18 25.98942 28.86932 31.52641 34.80524 37.15639

19 27.20356 30.14351 32.85234 36.19077 38.58212

20 28.41197 31.41042 34.16958 37.56627 39.99686

21 29.61509 32.67056 35.47886 38.93223 41.40094

22 30.81329 33.92446 36.78068 40.28945 42.79566

23 32.00689 35.17246 38.07561 41.63833 44.18139

24 33.19624 36.41503 39.36406 42.97978 45.55836

25 34.38158 37.65249 40.6465 44.31401 46.92797

26 35.56316 38.88513 41.92314 45.64164 48.28978

27 36.74123 40.11327 43.19452 46.96284 49.64504

28 37.91591 41.33715 44.46079 48.27817 50.99356

29 39.08748 42.55695 45.72228 49.58783 52.3355

30 40.25602 43.77295 46.97922 50.89218 53.67187

35 46.05877 49.80183 53.20331 57.34199 60.27459

40 51.80504 55.75849 59.34168 63.69077 66.76605

45 57.50529 61.65622 65.41013 69.9569 73.16604

50 63.16711 67.50481 71.42019 76.1538 79.48984

60 74.397 79.08195 83.29771 88.37943 91.95181

80 96.5782 101.8795 106.6285 112.3288 116.3209

100 118.498 124.3421 129.5613 135.8069 140.1697

Table A3 Right tail critical value of the Chi-Square distribution
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Table A4 Right tail critical value for the F-distribution: 5 percent level
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