

WORKSHOP PROCEEDING

The 1st International Workshop Development of Renewable Energy for The Mekong Delta

Organized by Can Tho University Can Tho City, 14th March 2016

CAN THO UNIVERSITY PUBLISHING HOUSE 2016

CONTENTS

PRESENTATIONSxi
Renewable Energy as an Option to Mitigate Climate Change
The Outlook, Policy, Barriers and Perspectives of Solar Energy in the Mekong Delta Regions 2
Wind Power Development in the Mekong Delta: Potential and Obstacles
Conversion of Water Hyacinth into Biofuel Intermediate: Combination Subcritical Water and Zeolite Based Catalyst Processes
Thermochemical Conversion of Biomass Resources
The Potential Electrical Power Generation via Water Hyacinths and Agricultural Waste
The New Green System for BDF Production Competitive with Petro-diesel
Biogas Technology and Waste Utilization
Biogas Production from Rice Straw and Water Hyacinth
Assessments on Indoor and Outdoor Drying Methods for Artemia Biomass: Effect on Drying Time and Product Quality
The Materials for Batteries and Capacitors: Synthesis and Electrochemical Characterization 14
Chemical and Biological Characteristics of Poon Trees Calophyllum inophyllum 1. and Its Oil Extraction Used as Biofuels
Potential of Using Activated Sludge as Feedstock for Biodiesel Production in Taiwan
Microalgal Culture with Digestate from Methane Fermentation: Light Environment in the Culture Solution with Different Digestate Concentrations and Microalgal Cell Densities
FULL-TEXTS
Conversion of Water Hyacinth into Biofuel Intermediate: Combination Subcritical Water and Zeolite Based Catalyst Processes 19
The New Green System for BDF Production Competitive with Petro-diesel
Chemical and Biological Characteristics of Poon Trees Calophyllum inophyllum 1. and its Oil Extraction Used as Biofuels
Potential of Using Activated Sludge as Feedstock for Biodiesel Production in Taiwan
Microalgal Culture with Digestate from Methane Fermentation: Light Environment in the Culture Solution with Different Digestate Concentrations and Microalgal Cell Densities

Biodiesel Production and Use for Agricultural Production in the Mekong Delta: Current Status an Potential
An Overview of the Renewable Energy Potentials in the Mekong River Delta, Vietnam
Pilot Application on Solar Energy Combined Electricity Grid to Rural Water Supply Station in Can Tho City
Study on Fermentation Conditions for Bioethanol Production from Cocoa Pod Hydrolysate96
Modified Controls for Doubly Fed Induction Generator under Unbalanced Voltage for Torque Stability Controller 105
Room Temperature Removal of Hydrogen Sulfide in Biogas Using Fe ₂ O ₃ -based Sorbent 121
On the Dissipation and Its Relation to Irreversible Processes
FabricationandCharacterizationofGraphene/GrapheneOxide-BasedPoly(vinylalcohol)NanocompositeMembranes for PervaporationPehydration of Ethanol139
Prediction in Off-design Operation for the Helical Heat Recovery Exchanger
Selective Adsorption of H ₂ S in Biogas Using Zeolite Prepared by Microwave-assisted Method . 160
Optimization of Biodiesel Production from Vietnamese Vernicia montana Lour. Using a Co- solvent Method with an Alkaline Catalyst

On the Dissipation and Its Relation to Irreversible Processes

Nguyễn Chí Thuần¹, Nguyễn Quang Long¹, Hoàng Ngọc Hà^{1*}

¹University of Technology, VNU-HCM, Vietnam.

ABSTRACT

As usual, industrial process systems operate far from (stable) equilibrium. Under practical conditions when putting the system back in equilibrium, this gives rise to the loss of energy (or certain generalized energy). Following the second law of thermodynamics, an irreversibleprocess generates entropy. On the basis of this property, we propose an approach that allows to investigate quantitatively the amount of (generalized) energy lost when the system reaches equilibrium. A liquid phase reactor modelled with the CSTR (continuous stirred tank reactor) in which the acid-catalyzed hydration of 2-3-epoxy-1propanol to glycerol subject to steady state multiplicity takes place is used to illustrate the results.

Keywords: Entropy, energy, entropy production, irreversibility.

1. INTRODUCTION

In chemical engineering, thermodynamics plays a central role for studying and evaluating the dynamical evolutions of chemical processes (Callen, 1985; Glansdorff and Prigogine, 1971; Sandler, 1999). The change of states correlates with the change of energy and entropy. The dynamics of thermodynamic system is typically described by Ordinary Differential Equations (ODEs) or Partial Differential Equations (PDEs) (or even, by Differential and Algebraic Equations (DAEs)) on the basis of balanced equations (mass and energy) and possibly momentum equation. The Continuous Stirred Tank Reactors (CSTRs) belong to a large class of nonlinear dynamical systems described by ODEs which proposed by (Luvben, 1990). Several application of nonlinear control methods to CSTRs can be found in the literature, for example nonlinear feedback control under constraints (Viel et al., 1997), nonlinear PI control (Alvarez-Ramirez and Morales, 2000), classical Lyapunov based control (Antonelli and Astolfi, 2003), power/energy-shaping control or generalized energy based approach (Favache and Dochain, 2010), port Hamiltonian framework (Hangos et al., 2001; Hudon et al., 2008; Hoang et al., 2011) and recently, stability analysis and control design based on thermodynamically consistent Lyapunov methodology (Ydstie and Alonso, 1997, 2011; Eberard et al.; 2007; Ederer et al., 2011; Hoang et al., 2012, 2013a).

Tel: 84-968990558

^{*}Email: ha.hoang@hcmut.edu.vn

This paper focuses on the analysis of reacting systems from an energy-based viewpoint. More precisely, the Van Heerden diagram based analysis via the balance of energy produced and energy consumed shows that thereactionsystem is subject to steady state multiplicity. In addition, it follows that the practical operation of the reaction system at some stationary equilibrium from any initial operating condition gives rise to the loss of energy (or certain generalized energy) which characterized by the non-negative property of entropy production rate (i.e., the irreversibility of the reaction system).

2. THE CSTR MODELLING USING THERMODYNAMICS

2.1 The classical model of CSTR

Let us consider a CSTR with one reaction involving *n* chemical species:

$$\sum_{i=1}^{n} \nu_i M_i = 0 \tag{1}$$

)

Where v is the signed stoichiometric coefficient of species *i*.

The following assumptions are made throughout the paper:

(A1) The fluid mixture is ideal, incompressible and under isobaric conditions.

(A2) The heat flow rate coming from the jacket \dot{Q}_{j} is given by the following expression:

$$\dot{Q}_{J} = \alpha \left(T_{J} - T \right)_{(2)}$$

with λ being the heat exchange coefficient. The jacket temperature is denoted by T_{J} .

(A3) The specific heat capacities are assumed to be constant.

2.2 Thermodynamic approach

In thermodynamics the system variables are split between extensive variables (such as the internal energy U, the entropy S, the volume V, and the molar number N_i) and intensive ones(such as the temperature T, the pressure p, and the chemical potential μ_i). The variation of the internal energy U (under isobaric conditions, the enthalpy H defined as H= U + pV can then be used instead of the internal energy U) is directly derived from the variation of the extensive variables using the Gibbs' relation (Callen, 1985):

$$dH = TdS + \sum_{i=1}^{n} \mu_i dN_i$$
 (3)

As a consequence, the intensive variables are given by:

Development of Renewable Energy for the Mekong Delta - DREMD

$$T = \left(\frac{\partial H}{\partial S}\right)_{N_i}, \mu_i = \left(\frac{\partial H}{\partial N_i}\right)_{N_{k,k+i}}$$
(4)

Since the enthalpy H is also an extensive variable, it is a homogeneous function of degree 1 of $(N_1, ..., N_n, S)$. From Euler's theorem, we get (Callen, 1985):

$$H(S, N_i) = TS + \sum_{i=1}^{n} \mu_i N_i$$
 (5)

From (3)(5), we have:

$$dS = \frac{1}{T}dH + \sum_{i=1}^{n} \frac{-\mu_{i}}{T}dN_{i} (6)$$
$$S(H, N_{i}) = \frac{1}{T}H + \sum_{i=1}^{n} \frac{-\mu_{i}}{T}N_{i} (7)$$

The system with (3)(5) is said to be in energy representation or (6)(7) in entropy representation. In this work, the energy representation will be used to derive the theoretical models, whereas the entropy representation is used to calculate the "energetic" dissipation (i.e., the irreversibility of the system).

3. THE LIQUID PHASE ACID-CATALYZED HYDRATION OF 2-3-EPOXY-1-PROPANOL TO GLYCEROL

A non-isothermal isobaric CSTR involving the liquid phase acid-catalyzed hydration of 2-3-epoxy-1-propanol to glycerol is considered. For this system, oscillations or unstable behaviors have been experimentally shown (Heemskerk *et al.*, 1980; Rehmus *et al.*, 1983; Vleeschhouwer *et al.*, 1988; Vleeschhouwer and Fortuin, 1990). Its stoichiometric equation is as follows:

$$C_{\mathcal{H}} H_{\mathcal{Q}} Q_{2} + H_{\mathcal{Q}} Q_{2} + H_{\mathcal{Q}} Q_{3} (8)$$

The rate per mass unit of the reaction is given by:

$$r_{m} = (k_{0}c_{H})e^{\frac{I_{0}}{T}}c_{1}(9)$$

where c_{H^+} , c_1 , k_0 and T_a stand for the molar concentrations of H^+ and 2-3-epoxy-1propanol per mass unit, the kinetic constant and the activation temperature, respectively. The system is fed with a mixture of 2-3-epoxy-1-propanol, water and sulfuric acid according to the total mass flow rate q^{in} The mass fraction of sulfuric acid is assumed to be very low so that its balanced equation is neglected.

3.1 System dynamics and steady state multiplicity behavior

1

The material balances are as follows (Vleeschhouwer et al., 1988; Hoang et al., 2013a):

$$\begin{cases} \frac{dN_1}{dt} = q^{in}c_1^{in} - q^{out}c_1^{out} - r_m M = F_1^{in} - F_1^{out} - r_m M \qquad (a) \\ \frac{dN_2}{dt} = q^{in}c_2^{in} - q^{out}c_2^{out} - r_m M = F_2^{in} - F_2^{out} - r_m M \qquad (b) \end{cases}$$
(10)

$$\frac{dn_{3}}{dt} = -q^{out}c_{3}^{ind} + r_{m}M = -F_{3}^{out} + r_{m}M$$
(c)

The total mass of the reacting mixture is assumed to be constant (i.e., $M = \sum \overline{M}_i N_i = constant$ where \overline{M}_i is the molar mass of species *i*. This condition is satisfied by using an outlet total molar flow regulation so that $\sum \overline{M}_i q^{in} c_i^{in} = q^{in} = \sum_i \overline{M}_i q^{out} c_i^{out} = q^{out} = q$.

The molar fraction of species *i* given by x_i is expressed as follows:

$$x_i = \frac{N_i}{N} \tag{11}$$

with $N = \sum N_i$, the total molar number. We assume that the liquid mixture behaves like an ideal solution^{*}, the enthalpy and the entropy expressed as follows:

$$H = \sum N_i h_i \tag{12}$$

$$S = \sum N_i s_i \tag{13}$$

The constitutive equations of the partial molar enthalpy, entropy and chemical potential given as follows (Sandler, 1999):

$$\begin{cases} h_{i}(P,T) = h_{i}^{*}(P,T) = h_{i}^{*}(T) = c_{p,i}^{*}(T - T_{ref}) + h_{ref} \qquad (a) \\ s_{i}(P,T) = s_{i}(T) = s_{i}^{*}(T) - R \ln\left(\frac{N_{i}}{N}\right) = c_{p,i}^{*} \ln\left(\frac{T}{T_{ref}}\right) + s_{ref} - R \ln\left(\frac{N_{i}}{N}\right) \qquad (b) \\ \mu_{i}(T,P,x_{i}) = \mu_{i}^{*}(T,P) + RT \ln\left(\frac{N_{i}}{N}\right) = h_{i}^{*} - Ts_{i}^{*} + RT \ln\left(\frac{N_{i}}{N}\right) \qquad (c) \end{cases}$$

^{*}This assumption usually adopted for the dynamic modeling of liquid phase chemical reactors (Luyben, 1990).

Where the superscript * stands for pure liquid phase component. The model is thermodynamically consistent since it represents thermodynamic properties of a stable liquid phase mixture. An alternative form of the energy equation written for the temperature variable is given as follows (Vleeschhouwer *et al.*, 1988; Hoang *et al.*, 2013a):

$$\left(\sum N_i c_{p,i}^*\right) \frac{dT}{dt} = \left(\sum F_i^m c_{p,i}^*\right) \left(T^m - T\right) + \dot{Q}_J + \left(-\Delta_r H\right) r_m M + \Delta Q$$
(15)

where $\Delta_r H = \sum v_i h_i$ is the reaction enthalpy and ΔQ is an extra term accounting for possible mechanical dissipation and mixing effects. The reaction described by (8)(9) is considered as a pseudo first order reaction with $c_{H^+} = 3 \times 10^{-8}$ kg.mo⁻¹, $k_0 = 86 \times 10^9$ kg.mol⁻¹.s⁻¹ and $T_a = 8822$ K (Vleeschhouwer *et al.*, 1988). Tables 1, 2 extracted from (Hoang *et al.*, 2013a) propose thermodynamic and operating parameters of the reaction system (10)(15).

Symbol (unit)	$C_{3}H_{6}O_{2}(1)$	H ₂ O (2)	$C_{3}H_{8}O_{3}(3)$
$\rho_i^*(\text{kg.m}^{-3})$	1117	1000	1261.3
$c_{p,i}^{*}(J.mol^{-1}.K^{-1})$	128.464	75.327	221.9
$h_{ref}(\mathrm{J.mol}^{-1})$	-2.95050×10^{5}	-2.8580×10^{5}	-6.6884×10^{5}
s_{inf} (J.K ⁻¹ .mol ⁻¹)	316.6	69.96	247.1

Table 1. Thermodynamic properties and parameters

Let $(\overline{T}, \overline{N}_1, \overline{N}_2, \overline{N}_3)$ be the steady state of the system. We derive the following relations after some elementary calculations:

$$(-\Delta_r H)r_m M = -\left\{ \left(\sum F_i^m c_{p,i}^*\right) \left(T^m - \overline{T}\right) + \alpha \left(T_J - \overline{T}\right) + \Delta Q \right\}$$
(16)

The left term and right term of the equality (16) correspond strongly to the energy produced E_p and the energy consumed E_c during the reaction course. The geometrical representation of these energies with respect to the stationary temperature \overline{T} shows the Van Heerden diagram of the reaction system (Van Heerden, 1953; Hoang and Dochain, 2013b). The crossing of those two curves presents the stationary heat balance and therefore, this gives possible steady states. It is shown that a steady state is said to be

(dynamically) stable if the tangent of the heat production lies below the heat consumption, i.e.:

$$\frac{dE_p}{dT} < \frac{dE_c}{dT} \tag{17}$$

Symbol (unit)	Numerical value
$\mathcal{T}^{in}(\mathbf{K})$	298
T_{J} (K)	298
$q (\mathrm{kg.s^{-1}})$	0.46×10^{-3}
F_1^{in} (mol.s ⁻¹)	0.0013
F_2^{in} (mol.s ⁻¹)	0.0200
F_4^{in} (mol.s ⁻¹)	6.9×10^{-6}
M(kg)	75×10^{-3}
α (W.K ⁻¹)	0.4
$\Delta Q(\mathbf{W})$	8.75

 Table 2. The CSTR operating conditions

According to the operating conditions imposed, as shown in Figure 1, the system exhibits three stationary operating points denoted by P_1 , P_2 and P_3 .

Figure 1: The Van Heerden diagram of the CSTR

Table 3 gives the numerical values of these three stationary operating points, which calculated using MATLAB. It is worth noting from (17) that P_1 and P_3 are (dynamically) stable and P_2 is (dynamically) unstable. From a physical point of view, it follows that as a small rise in temperature happens, (17) requires that the heat production E_p increases more rapidly than the heat consumption E_c and the temperature will continue to rise until a stable equilibrium at P_3 reached. In the opposite case of a small temperature drop at P_2 the temperature will continue to fall until it reaches the value \overline{T}_1 at P_1 .

Symbol (unit)	\overline{T} (K)	\overline{N}_1 (mol)	\overline{N}_2 (mol)	\overline{N}_3 (mol)
Point P_1	314.35	0.1723	3.2181	0.0470
Point P_2	323.60	0.1364	3.1822	0.0829
Point P_3	346.47	0.0469	3.0927	0.1724

Table 3. The reaction system with three steady states (multiplicity behavior)

3.2 The dissipation and irreversibility of the system: Ageneralized energetic approach

Let us complete the system dynamics (10) and (15) by considering the entropy balance on the basis of the Gibbs' relation in entropy representation (see also (De Groot and Mazur, 1962; Favache and Dochain, 2009; Hoang *et al.*, 2011)):

$$\frac{dS}{dt} = \Phi_S + \sigma_S, \ \sigma_S \ge 0 \tag{18}$$

Where:

$$\Phi_s = \sum \left(F_d s_d - F_i s_i \right) + \frac{\dot{Q}_J}{T_i}$$
(19)

$$\sigma_{S} = \sigma_{S}^{mix} + \sigma_{S}^{heat\,conv} + \sigma_{S}^{heat\,ex} + \sigma_{S}^{reac} \ge 0 \tag{20}$$

with Φ_s and σ_s being the entropy exchange flow rate with surrounding environment (due to convection and thermal exchange) and the irreversible entropy production, respectively. The irreversible entropy production σ_s is expressed as the sum of four thermodynamically separate contributions as follows (Favache and Dochain, 2009; Hoang *et al.*, 2014):

$$\sigma_{S}^{nux} = R \sum F_{il} \left(\ln \left(\frac{N_{il}}{N_{l}} \right) - \ln \left(\frac{N_{i}}{N} \right) \right) \ge 0$$
(21)

Development of Renewable Energy for the Mekong Delta - DREMD

$$\sigma_{S}^{heat\,conv} = \sum c_{p,i}^{*} F_{il} \left(\frac{T_{l}}{T} - 1 - \ln\left(\frac{T_{l}}{T}\right) \right) \ge 0$$
(22)

$$\sigma_{S}^{heatex} = \frac{Q_{J}}{T} - \frac{Q_{J}}{T_{J}} \ge 0$$
(23)

$$\sigma_{S}^{reac} = (\frac{\mu_{1}}{T} + \frac{\mu_{2}}{T} - \frac{\mu_{3}}{T})r_{m}M \ge 0$$
(24)

where $\sigma_s^{mx} \sigma_s^{heat conv} \sigma_s^{he}$ and σ_s^{reuc} are the irreversible entropy productions due to mixing, heat convection, heat exchange and chemical reaction, respectively. Furthermore, these physical effects are intrinsically independent from each other, each constituent entropy production is therefore non-negative thanks to the second law of thermodynamics (De Groot and Mazur, 1962).

From a mathematical point of view, it is straightforward to show the non-negative definiteness properties of σ_s^{mix} (21), $\sigma_s^{heatconv}$ (22), σ_s^{heatex} (23). Contrary to the entropy production of σ_s^{mix} $\sigma_s^{heatconv}$ σ_s^{heatex} the entropy production resulting from the reaction σ_s^{reac} (24) depends only on the internal state variables (i.e., the intensive variables) and the reaction rate $r_m M$ (9). Consequently, the non-negative property of σ_s^{reac} (24) has been largely accepted as an *a priori* postulate of irreversible thermodynamics (Favache and Dochain, 2009; Hoang *et al.*, 2014).

In what follows, we shall show that the non-negative property of σ_s^{reac} (24) holds via the numerical simulations using SIMULINK through the case study considered. In Table 4, four different initial conditions are used. The SIMULINK interconnection schema for the simulations is given in Figure 2.

Figure 2: The SIMULINK interconnection schema

The simulations in Figure 2 show entropy production due to chemical reaction are always positive regardless of the initial conditions. This inherent property characterizes the amount of energy lost due to irreversible transformations and is strongly related to the energy dissipation as shown in (Ydstie, 2007).

Symbol (unit)	Point C ₁	Point C ₂	Point C ₃	Point C ₄
T(0) (K)	330	320	310	315
$N_1(0) \pmod{1}$	0.05	0.18	0.14	0.135
$N_2(0) \pmod{1}$	3	3	3	3
$N_3(0)$ (mol)	0.1880	0.0835	0.1157	0.1197

Table 4. Initial conditions for simulations

Figure 2. Entropy production due to reaction

4. CONCLUSIONS

In this work, we have combined thermodynamic properties with numerical simulations to calculate steady states via heat balance based on Van Heerden diagram; and to verify the thermodynamic stability condition of reaction process systems. It is shown that the practical operation of the reaction system at some stationary equilibrium from any initial operating condition releases certain generalized energy which characterized by the non-negative property of entropy production rate (i.e., the irreversibility of the reaction system). It remains now to stabilize the chemical reaction system at a desired steady state (for example, the unstable middle point P_2) via energy-based approaches or thermodynamics.

Acknowledgements: This research funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number C2016-xx-xx (Dec. number: 2420/DHQG-KHCN).

REFERENCES

- Alonso, A.A., Ydstie, B.E., 2001. Stabilization of distributed systems using irreversible thermodynamics. Automatica. 37:1739–1755.
- Alvarez-Ramírez, J., Morales, A., 2000. PI control of continuously stirred tank reactors: Stability and performance. Chem. Eng. Sci. 55(22):5497-5507.
- Antonelli, R., Astolfi, A., 2003. Continuous stirred tank reactors: Easy to stabilise? Automatica. 39:1817–1827.
- Callen, H.B., 1985. Thermodynamics and an introduction to thermostatics, 2nd edition. John Wiley & Sons, New York.
- Eberard, D., Maschke, B., Van Der Schaft, A., 2007. An extension of pseudo Hamiltonian systems to the thermodynamic space: towardsa geometry of non-equilibrium thermodynamics. Reports on Mathematical Physics. 60(2):175–198.
- Ederer, M., Gilles, E.D., Sawodny, O., 2011. The Glansdorff-Prigogine stability criterion for biochemical reaction networks. Automatica. 47:1097-1104.
- Favache, A., Dochain, D., 2009. Thermodynamics and chemical systems stability: the CSTR case study revisited. Journal of Process Control. 19(3):371-379.
- Favache, A., Dochain, D., 2010. Power-shaping of reaction systems: The CSTR case study. Automatica. 46(11):1877-1883.
- Glansdorff, P Prigogine, I., 1971. Thermodynamic theory of structure, stability and fluctuations. Wiley-Interscience.
- De Groot, S.R., Mazur, P 1962. Non-equilibrium Thermodynamics, first edition. Dover Pub. Inc., Amsterdam.
- Hangos, K.M., Bokor, J., Szederkényi, G., 2001. Hamiltonian view on process systems. AIChE Journal. 47(8):1819–1831.
- Heemskerk, A.H., Dammers, W.R., Fortuin, J.M.H., 1980. Limit cycles measured in a liquidphase reaction system. Chemical Engineering Science.32:439-445.
- Hoang, H., Couenne, F., Jallut, C., Le Gorrec, Y 2011. The Port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control. 21(10):1449-1458.
- Hoang, H., Couenne, F., Jallut, C., Le Gorrec, Y 2012. Lyapunov-based control of non isothermal continuous stirred tank reactors using irreversible thermodynamics. Journal of Process Control. 22(2):412–422.
- Hoang, N.H., Couenne, F., Jallut, C., Le Gorrec, Y., 2013a. Thermodynamics based stability analysis and its use for nonlinear stabilization of the CSTR. Computers and Chemical Engineering. 58:156-177.
- Hoang, N.H., Dochain, D., 2013b. Entropy-based stabilizing feedback law under input constraints of a CSTR. Proceedings of the 10th IFAC International Symposium on Dynamics and Control of Process Systems. Mumbai, India. pp. 27–32.

- Hoang, N.H., Dochain, D., Hudon, N., 2014. A thermodynamic approach towards Lyapunov based control of reaction rate. Proceedings of the 19th IFAC World Congress, Cape Town, South Africa. pp. 9117–9122.
- Hudon, N., Höffner, K., Guay, M., 2008. Equivalence to dissipative Hamiltonian realization. Proceedings of the 47th IEEEConference on Decision and Control. Cancun, Mexico. pp. 3163-3168.
- Luyben, W.L., 1990. Process modeling, simulation and control for chemical engineers, 2nd edition, McGraw-Hill.
- Rehmus, P Zimmermann, E.C., Ross, J., 1983. The periodically forces conversion of 2-3epoxy-1-propanol to glycerine: a theoretical analysis. J. Chem. Phys. 78:7241-7251.
- Sandler, S.I., 1999. Chemical and Engineering Thermodynamics, 3rd edition, Wiley and Sons.
- Van Heerden, C., 1953. Autothermic processes. Ind. Eng. Chem. 45(6):1242-1247
- Viel, F., Jadot, F., Bastin, G., 1997. Global stabilization of exothermic chemical reactors under input constraints. Automatica. 33(8):1437-1448.
- Vleeschhouwer, P.H.M., Vermeulen, D.P., Fortuin, J.M.H., 1988. Transient behavior of a chemically reacting system in a CSTR. AIChE Journal. 34:1736–1739.
- Vleeschhouwer, P.H.M., Fortuin, J.M.H., 1990. Theory and experiments concerning the stability of a reacting system in a CSTR. AIChE Journal. 36:961–965.
- Ydstie, B.E, 2007. Availability and dissipativity in networks: Foundations of process control. AIP Conference Proceedings. doi: 10.1063/1.2979058. pp. 350-355.
- Ydstie, B.E., Alonso, A.A., 1997. Process systems and passivity via the Clausius-Planck inequality. Systems & Control Letters. 30(5):253-264.